Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы Российский патент 2022 года по МПК C22F1/18 C22F1/10 B21C23/08 B21C37/00 B21B3/00 

Описание патента на изобретение RU2771342C1

Изобретение относится к металлургическому производству, конкретно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий, действующих на основе высокотемпературного эффекта памяти формы и предназначенных для различных отраслей промышленности, медицины и техники, в особенности сигнально-пусковых устройств.

Сплавы на основе TiNi, легированные гафнием, представляют особый интерес благодаря реализации высокотемпературного эффекта памяти формы. Применение данных сплавов позволяет в исполнительных элементах готовых изделий получить температуру конца обратного мартенситного превращения Ак выше 100°С.

Известен способ получения сплавов TiNiHf, заключающийся в использовании порошковой технологии, включающей гидро-кальциевый синтез с последующей консолидацией порошковой массы путем прессования и дальнейшего спекания в вакууме (Патент РФ 2630740, МПК B22F 3/16 B22F 9/18 С22С 14/00 С22С 19/03, 2017 г. и Патент РФ №2705487, МПК B22F 3/16 B22F 9/18 С22С 14/00 С22С 19/03, 2019 г.).

К недостаткам данного способа можно отнести сложность получения заданного химического состава, а также высокую вероятность получения повышенной концентрации газовых примесей, что негативно сказывается на функциональных свойствах и особенно на технологической пластичности получаемого сплава. Кроме того, к недостаткам данного способа можно отнести сложность получения заготовки без остаточной пористости, а также сложность получения длинномерных заготовок методом экструзии.

Известен способ получения сплавов TiNiHf с высокотемпературным эффектом памяти формы, при которых выплавка исходных слитков производится методом дуговой плавки чистых шихтовый компонентов (Патент США №5114504, МПК С22С 14/00; С22С 19/00, 1992).

Данный метод выплавки имеет ряд недостатков, связанных с физико-химическими свойствами исходных компонентов и особенностями процесса выплавки, что зачастую приводит к несоответствию заданного и фактического химического составов. Кроме того, повышенная ликвация компонентов и вероятное выделение неравновесных и избыточных фаз требуют многократного переплава и длительного высокотемпературного отжига, а также приводят к ухудшению свойств сплава.

Также известен способ получения сплавов TiNiHf с высокотемпературным эффектом памяти формы с использованием различных методов выплавки и деформационной обработки, включающий также предварительную термическую обработку перед финишной термообработкой старением (Патент США №20190194788. МПК C22F 1/00; C22F 1/10, С22С 19/03 2019).

Недостатки данного способа состоят в том, что содержание Ni в данной группе сплавов составляет от 50,0 ат. % до 50,3 ат %, что. во-первых, приводит к необходимости увеличения концентрации дорогостоящего Hf для получения высокотемпературного эффекта памяти формы, а во вторых к проявлению эффекта старения, что может повлиять на эксплуатационные характеристики материала в условиях длительной работы сплава при повышенных температурах. Кроме того, в описании данного способа отсутствуют четкие критерии выбора того или иного метода получения исходного слитка, а также его последующей обработки, что, в свою очередь затрудняет прогнозирование формирующейся в сплаве структуры и комплекса механических и функциональных свойств.

Технический результат, решаемый изобретением, заключается в создании способа получении длинномерных полуфабрикатов из сплавов TiNiHf контролируемого фазового и химического состава, обладающих высокотемпературным эффектом памяти формы, а также заданными механическими характеристиками.

Технический результат достигается тем, что, выплавку исходных слитков заданного химического состава с содержанием гафния 1,0-3,0 ат. % и никеля 48,5-50,0 ат. % производят методом электронно-лучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа за один переплав. В качестве шихтовых материалов используют или чистые исходные компоненты Ti, Ni и Hf, или готовый сплав никелида титана в виде прутка известного химического состава и гафниевую проволоку повышенной чистоты. Полученный слиток, подвергают гомогенизирующему отжигу в вакууме не менее 10-4 мм рт. ст. при температуре 1050°С в течение не менее 1 ч. Из исходного слитка после гомогенизирующего отжига получают пруток требуемого диаметра методом ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или методом сортовой прокатки в аналогичном интервале температур с коэффициентом вытяжки за проход не более 1,15. После этого прутки подвергают последеформационному отжигу при температуре 400-550°С в течение 1-10 ч в зависимости от требований к конечному комплексу механических и функциональных свойств.

Сущность заявленного способа заключается в проведении выплавки исходных слитков методом электронно-лучевой плавки на первом этапе, гомогенизирующего отжига на втором этапе, деформационной обработки (ротационной ковки или прокатки) на третьем этапе и последеформационного отжига на заключительном этапе. Метод электронно-лучевой плавки обладает рядом преимуществ, по сравнению с другими методами, такими как индукционная и электродуговая плавки, а именно: эффективным очищением металлов от газовых и других неметаллических примесей; исключением загрязнения металла материалом тигля, так как плавка идет в гарниссаже с последующей кристаллизацией в водоохлаждаемом медном кристаллизаторе; отсутствием дефектов усадочного происхождения в слитках за счет возможности плавного изменения мощности в электронном пучке и полного заполнения металлом усадочной раковины; возможностью использования шихтовых металлов в любом виде. Использование медного кристаллизатора ручьевого типа позволяет осуществлять последующую термомеханическую обработку слитка непосредственно после выплавки, например методом ротационной ковки или сортовой прокатки, для изготовления полуфабрикатов различного профильного сортамента.

При этом в качестве исходной шихты для выплавки могут использоваться как чистые исходные компоненты Ti, Ni и Hf, так и готовый интерметаллический сплав никелида титана в виде прутка известного химического состава и гафниевая проволока повышенной чистоты. Использование готового сплава никелида титана в качестве исходного компонента позволяет, во-первых, производить его переработку, а во-вторых, снижает вероятность дополнительного попадания примесей в расплав за счет окисления чистого титана при плавке.

Концентрацию никеля в готовом сплаве задают на уровне 48,50-50,0 ат. %, концентрацию гафния в сплаве задают на уровне 1,0-3,0 ат. %, а титан - все остальное. Пониженное содержание гафния на ряду с пониженным содержанием никеля и соответствующей термомеханической обработкой позволяют получить в сплаве температуру конца обратного мартенситного превращения Ак в интервале температур 125-185°С, а также избежать образования большого количество избыточной охрупчивающей фазы типа (Ti,Hf)2Ni, формирующейся в сплавах с повышенным содержанием Ti. Увеличение концентрации Hf выше 3,0 ат. % в сочетании с пониженным содержанием Ni приводит к значительному снижению технологической пластичности сплава. Увеличение концентрации Ni при сохранении концентрации Hf на таком же уровне не позволяет получить требуемые температуры начала и конца обратного мартенситного превращения.

На следующей этапе литую заготовку подвергают гомогенизирующему отжигу в вакууме при температуре 1050°С в течение не менее 1 ч и последующей ротационной ковке в интервале температур 750-950°С с единичными обжатиями не более 7% или сортовой прокатке в аналогичном интервале температур с коэффициентом вытяжки за проход не более 1,15 до требуемого конечного диаметра.

Проведение ротационной ковки или сортовой прокатки при температуре деформации 750-950°С позволяет получать длинномерную заготовку различного диаметра сплава TiNiHf, обладающую высокотемпературным эффектом памяти формы.

На последнем этапе полученную заготовку подвергают последеформационному отжигу при температуре 400-550°С в течения 1-10 ч с целью устранения избыточного деформационного наклепа и получения требуемого сочетания механических и функциональных свойств, в том числе требуемой температуры конца обратного мартенситного превращения Ак в интервале температур 125-185°С.

Результаты апробации заявленного способа приведены в виде конкретного примера.

Пример №1.

Выплавку исходного слитка проводили методом электронной-лучевой плавки в печи мощностью 60 кВт в вакууме 1×10-5 мм рт. ст. в медном водоохлаждаемом кристаллизаторе ручьевого типа. В качестве исходной шихты для выплавки сплава TiNiHf были выбраны следующие материалы: шлифованный пруток диаметром 12 мм никелида титана марки ТН-1; проволока гафниевая нагартованная марки ГФИ-1 диаметром 2 мм. Химический состав используемых прутка и проволоки приведен в таблицах 1 и 2. Химический состав слитка приведен в таблице 3.

После выплавки слиток подвергали гомогенизирующему отжигу в вакууме 10-5 мм рт. ст.при температуре 1050°С в течение 3 ч. Деформацию слитков проводили методом горячей ротационной ковки при температуре 950°С с относительной степенью деформации за проход 5-10%. В результате из исходного слитка был получен пруток диаметром 3,5 мм и длиной 870 мм. После деформации пруток подвергали последеформационному отжигу при температуре 550°С, в течение 2 ч. Механические и функциональные свойства полученного прутка приведены в таблице 5.

Пример №2.

Выплавку исходного слитка проводили методом электронной-лучевой плавки в печи мощностью 60 кВт в вакууме 1×10-5 мм рт. ст. в медном водоохлаждаемом кристаллизаторе ручьевого типа. В качестве исходной шихты для выплавки сплава TiNiHf использовали следующие компоненты: йодидный титан марки ТИ-1 (99,99%), никель марки Н0 (99,99%) и йодидный гафний марки ГФИ-1 (99,93%). Химический состав слитка приведен в таблице 4.

После выплавки слиток подвергали гомогенизирующему отжигу в вакууме 10-5 мм рт. ст. при температуре 1050°С в течение 3 ч. Деформацию слитков проводили методом сортовой прокатки в системе калибров квадрат-квадрат при температуре 950°С с коэффициентом вытяжки за проход не более 1,15. В результате из исходного слитка был получен пруток сечением 7×7 мм и длиной 500 мм. После деформации пруток подвергали последеформационному отжигу при температуре 550°С, в течение 2 ч. Механические и функциональные свойства полученного прутка приведены в таблице 5.

Исходя из представленных примеров можно заключить, что благодаря заявленному способу удалось получить длинномерные качественные прутки из сплава на основе никелида титана с содержанием гафния 4,4 вес. % (1,4 ат. %) и 9,0 вес. % (2,9 ат. %) с высокими механическими и функциональными свойствами и высокотемпературным эффектом памяти формы в заявленном интервале температур (Ак=125-185°С). Из полученных прутков возможно изготовление изделий технического назначения, действующих на основе высокотемпературного эффекта памяти формы.

Технико-экономический эффект заявленного способа состоит в обеспечении возможности получения полуфабрикатов из сплавов на основе никелида титана, легированных гафнием, с высокотемпературным эффектом памяти формы и высокими механическими и функциональными свойствами. Использование данных полуфабрикатов позволит значительно расширить сферу применения сплавов TiNiHf за счет создания новых устройств, действующих на основе высокотемпературного эффекта памяти формы, используемых в различных областях науки и техники.

Похожие патенты RU2771342C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЖАРОПРОЧНОГО СПЛАВА НА ОСНОВЕ НИОБИЕВОЙ МАТРИЦЫ С ИНТЕРМЕТАЛЛИДНЫМ УПРОЧНЕНИЕМ 2015
  • Каблов Евгений Николаевич
  • Мин Павел Георгиевич
  • Вадеев Виталий Евгеньевич
  • Евгенов Александр Геннадьевич
  • Светлов Игорь Леонидович
  • Крамер Вадим Владимирович
RU2595084C1
Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка 2020
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Колмаков Алексей Георгиевич
  • Конушкин Сергей Викторович
  • Каплан Михаил Александрович
  • Морозова Ярослава Анатольевна
  • Михайлова Анна Владимировна
RU2751065C1
Сплав на основе титана и способ его обработки для создания внутрикостных имплантатов с повышенной биомеханической совместимостью с костной тканью 2019
  • Конопацкий Антон Сергеевич
  • Дубинский Сергей Михайлович
  • Шереметьев Вадим Алексеевич
  • Прокошкин Сергей Дмитриевич
  • Браиловский Владимир Иосифович
RU2716928C1
Способ получения тонкой проволоки из сплава TiNiTa 2020
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Конушкин Сергей Викторович
  • Каплан Михаил Александрович
  • Морозова Ярослава Анатольевна
RU2759624C1
Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr 2018
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Колмаков Алексей Георгиевич
  • Конушкин Сергей Викторович
  • Морозов Михаил Михайлович
  • Каплан Михаил Александрович
RU2694099C1
Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты) 2019
  • Карелин Роман Дмитриевич
  • Хмелевская Ирина Юрьевна
  • Прокошкин Сергей Дмитриевич
  • Комаров Виктор Сергеевич
  • Андреев Владимир Александрович
  • Перкас Михаил Маркович
  • Юсупов Владимир Сабитович
RU2717764C1
СПОСОБ ПОЛУЧЕНИЯ ПРУТКОВ И СПОСОБ ПОЛУЧЕНИЯ ТОНКОЙ ПРОВОЛОКИ ИЗ СПЛАВА СИСТЕМЫ НИКЕЛЬ-ТИТАН С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ 2013
  • Андреев Владимир Александрович
RU2536614C2
Способ получения слитков сплава на основе титана 2017
  • Нестерова Нина Васильевна
  • Осипов Сергей Юрьевич
  • Орлов Владислав Константинович
  • Юрьев Александр Андреевич
RU2675010C1
МЕТАЛЛИЧЕСКИЙ НАНОСТРУКТУРНЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА И СПОСОБ ЕГО ОБРАБОТКИ 2011
  • Прокошкин Сергей Дмитриевич
  • Петржик Михаил Иванович
  • Филонов Михаил Рудольфович
  • Дубинский Сергей Михайлович
  • Жукова Юлия Сергеевна
  • Браиловский Владимир Иосифович
  • Инаекян Каринэ Эрнестовна
RU2485197C1
СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ TiHfNi 2019
  • Касимцев Анатолий Владимирович
  • Юдин Сергей Николаевич
  • Володько Сергей Сергеевич
  • Алимов Иван Александрович
RU2705487C1

Реферат патента 2022 года Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы

Изобретение относится к металлургии, а именно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий с повышенной температурой эксплуатации для различных отраслей промышленности, медицины и техники. Способ получения прутков из сплава TiNiHf с высокотемпературным эффектом памяти формы включает выплавку слитков и их деформацию. Выплавляют слитки заданного химического состава с содержанием гафния 1,0-3,0 ат. %, никеля 48,5-50,0 ат. % и титан - остальное, из чистых исходных компонентов Ti, Ni и Hf или из готового сплава никелида титана в виде прутка и гафниевой проволоки повышенной чистоты методом электроннолучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа, проводят гомогенизирующий отжиг слитков в вакууме не менее 10-4 мм рт. ст. при температуре 1050°С в течение не менее 1 ч. Последующую деформацию осуществляют путем ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или прокатки в интервале температур 750-950°С с коэффициентом вытяжки за проход не более 1,15, а затем проводят последеформационный отжиг при температуре 400-550°С в течение 1-10 ч. Обеспечивается получение прутков из сплавов TiNiHf контролируемого фазового и химического состава, обладающих высокотемпературным эффектом памяти формы, а также высокими механическими характеристиками. 5 табл., 2 пр.

Формула изобретения RU 2 771 342 C1

Способ получения прутков из сплава TiNiHf с высокотемпературным эффектом памяти формы, включающий выплавку слитков и их деформацию, отличающийся тем, что выплавляют слитки заданного химического состава с содержанием гафния 1,0-3,0 ат. %, никеля 48,5-50,0 ат. % и титан - остальное, из чистых исходных компонентов Ti, Ni и Hf или из готового сплава никелида титана в виде прутка и гафниевой проволоки повышенной чистоты методом электроннолучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа, проводят гомогенизирующий отжиг слитков в вакууме не менее 10-4 мм рт. ст. при температуре 1050°С в течение не менее 1 ч, а последующую деформацию осуществляют путем ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или прокатки в интервале температур 750-950°С с коэффициентом вытяжки за проход не более 1,15, а затем проводят последеформационный отжиг при температуре 400-550°С в течение 1-10 ч.

Документы, цитированные в отчете о поиске Патент 2022 года RU2771342C1

US 20190194788 A1, 27.06.2019
СПОСОБ ПОЛУЧЕНИЯ ПРУТКОВ И СПОСОБ ПОЛУЧЕНИЯ ТОНКОЙ ПРОВОЛОКИ ИЗ СПЛАВА СИСТЕМЫ НИКЕЛЬ-ТИТАН С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ 2013
  • Андреев Владимир Александрович
RU2536614C2
Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы 2017
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Колмаков Алексей Георгиевич
  • Конушкин Сергей Викторович
  • Морозов Михаил Михайлович
  • Каплан Михаил Александрович
  • Шатова Людмила Анатольевна
  • Леонов Александр Владимирович
RU2656626C1
Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты) 2019
  • Карелин Роман Дмитриевич
  • Хмелевская Ирина Юрьевна
  • Прокошкин Сергей Дмитриевич
  • Комаров Виктор Сергеевич
  • Андреев Владимир Александрович
  • Перкас Михаил Маркович
  • Юсупов Владимир Сабитович
RU2717764C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРУТКОВ ИЗ СВЕРХУПРУГИХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ Ti-Zr-Nb 2021
  • Шереметьев Вадим Алексеевич
  • Лукашевич Константин Евгеньевич
  • Кудряшова Анастасия Александровна
  • Галкин Сергей Павлович
  • Прокошкин Сергей Дмитриевич
  • Андреев Владимир Александрович
  • Браиловский Владимир Иосифович
RU2753210C1
ТЕРМОМЕХАНИЧЕСКАЯ ОБРАБОТКА НИКЕЛЬ-ТИТАНОВЫХ СПЛАВОВ 2014
  • Ван Дорен, Брайан
  • Шлегель, Скотт
  • Уиссман, Джозеф
RU2720276C2
CN 101381820 B, 19.05.2010
CN 108085563 A, 29.05.2018.

RU 2 771 342 C1

Авторы

Андреев Владимир Александрович

Карелин Роман Дмитриевич

Юсупов Владимир Сабитович

Лайшева Надежда Владимировна

Лазаренко Галина Юрьевна

Комаров Виктор Сергеевич

Даты

2022-04-29Публикация

2021-08-31Подача