ЗАЩИТНО-СМАЗОЧНЫЙ МАТЕРИАЛ ДЛЯ ГОРЯЧЕЙ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ Российский патент 2021 года по МПК B21B45/02 B21J3/00 

Описание патента на изобретение RU2756616C2

Изобретение относится к металлургии, в частности к защитно-смазочным материалам, используемым при горячей деформации металлов и сплавов. Может использоваться при горячей пластической деформации титана, циркония и сплавов на их основе, а также специальных сталей.

При горячей деформации нагретая заготовка соприкасается, как правило, с более холодным инструментом. В результате, с одной стороны, происходит разогрев контактной поверхности инструмента, снижение его твердости и прочности, а с другой стороны, резкое охлаждение поверхности обрабатываемой заготовки, что может привести к образованию на ее поверхности трещин, особенно при обработке таких материалов как титан. На эти показатели влияет теплосопротивление промежуточного, разделительного слоя между металлом и инструментом. При низком коэффициенте теплопроводности в разделительном слое прочностные характеристики инструмента не уменьшаются. Это способствует повышению срока службы инструмента и качества поверхности изделия.

Для уменьшения влияния разницы температур технологического инструмента и обрабатываемой заготовки применяют разделительный слой в виде защитных смазок, выполняющий также функцию по снижению контактного трения. Известно, также, что нагрев металлов и сплавов на воздухе для выполнения операций термической обработки и горячей деформации активирует их взаимодействие с кислородом и другими атмосферными газами с образованием на поверхности заготовок дефектного газонасыщенного слоя, что приводит к снижению пластичности и коррозионной стойкости обрабатываемого материала. Образующийся твердый дефектный газонасыщенный слой требует его последующего удаления механической обработкой или травлением, что приводит к значительным потерям металла и дополнительным экономическим затратам. Для сохранения качественной поверхности заготовок и деталей при минимальных отходах металла необходимо применение защитных покрытий, предотвращающих окисление поверхностного слоя. Одновременно защитные материалы, используемые при горячей обработке металлов давлением, должны обеспечивать низкое сопротивление деформации за счет снижения трения, то есть играть роль еще и смазочных материалов. При этом дополнительно смазочный материал должен обладать высокой несущей способностью, предотвращая нарушение сплошности слоя смазки при обработке давлением, предотвращать массоперенос материала инструмента на обрабатываемый металл.

Известно защитное покрытие для предохранения металла от окисления при нагреве его перед обработкой давлением [1]. Защитное покрытие включает следующие компоненты, мас. %: огнеупорный материал 20-30, активированный уголь (порошок) 8-10, кальцинированная сода 2-3, вода 70-57, и наносится путем мелкодисперсного распыления заявляемого покрытия. Это уменьшает потери металла на угар по сравнению с аналогичным нагревом металла без покрытия и обеспечивает защиту металла от обезуглероживания.

Недостатками указанного материала являются нестабильность образующегося на поверхности покрытия по толщине, удлинение времени подготовки металла к штамповке, что приводит к снижению его температуры, необходимость в дополнительном технологическом оборудовании по подготовке и нанесению покрытия, невысокая несущая способность материала, что приводит к нарушению его сплошности в процессе пластической деформации заготовки.

Известен защитный (стеклометаллический) [2] материал на основе жидкого стекла с наполнителем из металлических порошков алюминия, железа, ферроалюминиевого сплава, размеры частиц которых обычно менее 100 мкм. Жидкое стекло служит хорошей связующей средой для таких порошков, позволяя получать стабильные суспензии, необходимые для нанесения защитного материала на поверхность. При этом процесс нанесения характеризуется малой трудоемкостью. Металлическая составляющая этих защитных материалов в процессе нагрева заготовок регламентирование окисляется, взаимодействуя с кислородом, и предотвращает проникновение кислорода к основному металлу, тем самым защищая его от окисления. Однако использование указанных металлических порошков имеет ряд недостатков. Так, работа с тонкодисперсным порошком алюминия требует принятия особых мер безопасности, т.к. он обладает высокой химической активностью даже при комнатной температуре. Порошки железа и ферроалюминия очень чувствительны к влажности окружающей среды, легко взаимодействуют с водой, подвергаются коррозии и слеживанию. Поэтому уже при комнатной температуре стеклометаллические смазочные материалы содержат достаточное количество окисленного алюминия и железа, что снижает их активность при взаимодействии с кислородом при дальнейшем нагреве и, следовательно, эффективность защиты основного металла от окисления при высоких температурах. Кроме того, при просушивании покрытия, которое проводится при температурах 100-150°C, наряду с удалением воды, содержащейся в жидком стекле, происходит взаимодействие алюминиевого и железного порошка с водой, что еще больше снижает возможность их активного взаимодействия с кислородом при дальнейшем использовании. При нагреве заготовок в температурном интервале>700°C, характерном для обработки титана, циркония, сплавов на их основе и сталей, окисление указанных порошковых наполнителей происходит довольно быстро, в значительной мере ограничивая эффективность выполнения ими защитной функции основного материала от окисления. К тому же формируемые при этом окислы алюминия и железа фактически являются твердыми абразивными материалами, приводящими к повышению сопротивления деформации в разделительном слое в условиях горячей деформации.

Известен защитно-смазочный материал для термообработки и горячей деформации заготовок из металлов и сплавов на основе жидкого стекла с наполнителем [3], в качестве которого используется порошок меди в количестве 20-70% от массы, остальное - жидкое стекло. Использование в качестве наполнителя порошка меди, обладающего достаточно высокой химической стойкостью и антифрикционными свойствами, позволяет добиться получения эффективного защитно-смазочного материала. Указанный защитно-смазочный материал приготавливают в виде суспензии при перемешивании расчетного количества медного порошка в жидком стекле. При этом медный порошок не взаимодействует с водой и кислородом воздуха вплоть до нагрева заготовки до температуры 185°C и сохраняет способность активно взаимодействовать с кислородом при дальнейшем использовании при термообработке или горячей деформации. Кроме того, после приготовления суспензии каждая частица порошка оказывается окруженной жидким стеклом, что также защищает медь от дальнейшего окисления при температурах >185°C. При достаточно высоких температурах, порядка 700-800°C, вязкость жидкого стекла снижается и частицы медного порошка «оголяются» и начинается их постепенное окисление. Однако до этого момента полезные антифрикционные и защитные свойства чистой меди, как наполнителя защитно-смазочного материала, проявляются в гораздо большей степени, чем свойства известных наполнителей, например алюминия. Поэтому предлагаемый защитно-смазочный материал может быть использован при горячей деформации и термообработке титана, циркония, сплавов на их основе и сталей. После термообработки или горячей деформации, в результате снижения вязкости жидкого стекла и окисления большей части или всего медного порошка, уменьшается адгезия между защитно-смазочным и обрабатываемым материалом и защитно-смазочный материал легко удаляется с поверхности остывшего изделия.

Недостатками указанного материала являются весьма высокая стоимость его компонентов, длительное время подготовки металла к штамповке, что приводит к снижению температуры заготовки к моменту начала пластической деформации, а также необходимость в дополнительном технологическом оборудовании по нанесению покрытия.

Наиболее близким по технической сущности изобретения является защитно-смазочный материал, применяемый при штамповке турбинных лопаток, в виде стеклоткани, на одну из поверхностей которой нанесен графитсодержащий слой с поверхностной плотностью 20-70 г/м2 и содержанием графита более 25% [4]. Пред началом штамповки отрезок стеклоткани, перекрывающий по площади гравюру и тормозящую площадку штампа, укладывают в нижнюю половину штампа. Стеклоткань укладывают в нижнюю половину штампа таким образом, что поверхность стеклоткани с нанесенным графитсодержащим слоем обращена к поверхности нижней половины штампа. Затем в штамп укладывают нагретую до температуры деформации заготовку, которую накрывают отрезком стеклоткани таким образом, что поверхность с нанесенным графитсодержащим слоем обращена к верхней половине штампа, после чего осуществляют процесс штамповки. Применение стеклоткани в качестве теплоизоляции снижает потери тепла заготовки, позволяет компенсировать за счет внутреннего тепла заготовки потерю температуры поверхностных слоев за время транспортировки от печи до технологического инструмента, снижает теплоотдачу тепла от нагретой заготовки на гравюру штампа. Это позволяет снизить риск растрескивания подхоложенного слоя, улучшает формообразование поковки и ограничивает перегрев гравюры штампа, приводящий к потере его стойкости, уменьшение толщины образующегося на поверхности металла дефектного слоя, уменьшение перепада температуры между технологическим инструментом и обрабатываемой заготовкой в начальный момент пластической обработки, снижение тепловых потерь нагретого металла при пластической обработке, а также снижение затрат времени на нанесение защитно-смазывающего материала на заготовку и простоту его удаления после завершения пластической обработки.

Недостатками указанного материала являются постепенное накапливание остатков графитсодержащего слоя в углублениях гравюры, что при получении партии одинаковых поковок приводит к изменению размеров некоторых конструктивных элементов и искажению требуемой формы изделия.

Технической задачей является обеспечение стабильности размеров конструктивных элементов поковок, производимых партиями на одном комплекте технологического инструмента с использованием защитно-смазочного покрытия на основе графитсодержащей ровинговой ткани.

Поставленная задача решается тем, что защитно-смазочный материал для горячей пластической деформации металлов и сплавов, включающий ровинговую ткань и равномерно нанесенную на одну ее сторону графитовую смазку на водной основе, отличается тем, что в графитовой смазке на водной основе, представляющей водно-графитовый состав на основе коллоидного графита, содержание графита в пересчете на сухой остаток составляет 6-11% от поверхностной плотности защитно-смазочного материала.

Защитно-смазочный материал представляет ровинговую ткань толщиной 0.56 мм или толщиной 0.7 мм (ТУ 6-48-43-90) и равномерно нанесенную на нее с одной стороны по всей поверхности графитовую смазку на водной основе, представляющую водно-графитовый состав на основе коллоидного графита. Указанная графитовая смазка имеет содержание графита 6-11% от поверхностной плотности защитно-смазочного покрытия. Поверхностная плотность защитно-смазочного покрытия толщиной 0.56 мм, полученного указанным образом, составляет 700±30 г/м2, а у защитно-смазочного покрытия толщиной 0.7 мм поверхностная плотность составляет 780±20 г/м2. Изменение указанных значений приводят к снижению эксплуатационных качеств материала.

Техническим результатом является обеспечение стабильности размеров конструктивных элементов поковок, производимых партиями на одном комплекте технологического инструмента с использованием защитно-смазочного покрытия на основе графитсодержащей ровинговой ткани, отсутствие необходимости периодической очистки гравюры штампа от накапливаемого на рабочей поверхности графитсодержащего слоя.

Источники информации

1. Куклев А.В., Айзин Ю.М., Манюров Ш.Б., Капитонов В.А., Чащин В.В., Зуева Н.В. Защитное покрытие металлических заготовок перед нагревом под обработку металлов давлением. Патент РФ №2358017. Дата подачи заявки 20.07.2007. Дата регистр. 10.06.2010. Патентообладатель: ЗАО «КОРАД» (РФ).

2. Ажажа В.М., Вьюгов П.Н., Лавриненко С.Д., Линдт К.А., Мухачев А.П., Пилипенко Н.Н. Цирконий и его сплавы: технологии производства, области применения: Обзор // Харьков: ННЦХФТИ. 1998.

3. Валеева А.Х., Мулюков P.P., Валеев И.Ш., Валиахметов О.Р., Маркушев М.В. Защитно-смазочный материал для термообработки и горячей деформации металлов и сплавов. Патент РФ №2446217. Дата подачи заявки 26.07.2010. Опубл. 27.03.2012. Патентообладатель: Учреждение Российской академии наук Институт проблем сверхпластичности металлов РАН.

4. Николаева Ю.Ю., Оськин А.В., Кропотов В.А. Способ изготовления штампованных поковок турбинных лопаток из жаропрочных сплавов на основе никеля. Патент РФ №2679157. Дата подачи заявки: 2017.12.20. Опубликовано: 2019.02.06. Патентообладатель: ПАО «Корпорация ВСМПО АВИСМА».

Похожие патенты RU2756616C2

название год авторы номер документа
ЗАЩИТНО-СМАЗОЧНЫЙ МАТЕРИАЛ ДЛЯ ГОРЯЧЕЙ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ 2019
  • Белов Владислав Валерьевич
  • Слукин Евгений Юрьевич
RU2741047C1
СПОСОБ ГОРЯЧЕЙ ШТАМПОВКИ ЗАГОТОВОК ИЗ ТРУДНОДЕФОРМИРУЕМЫХ МЕТАЛЛОВ И СПЛАВОВ 2021
  • Полянский Сергей Николаевич
  • Попов Максим Владимирович
  • Колногоров Владимир Сергеевич
  • Смеян Михаил Анатольевич
RU2785111C1
СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПОВАННЫХ ПОКОВОК ТУРБИННЫХ ЛОПАТОК ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ 2017
  • Кропотов Владимир Алексеевич
  • Оськин Алексей Владимирович
  • Николаева Юлия Юрьевна
RU2679157C1
ЗАЩИТНО-СМАЗОЧНОЕ ПОКРЫТИЕ ДЛЯ ГОРЯЧЕЙ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ 2001
  • Шмелев В.П.
  • Майзенгельтер В.А.
  • Горячев А.П.
  • Шувалов А.А.
  • Бычков В.Ю.
  • Перевозов А.С.
  • Автономова Е.А.
  • Комаров А.Н.
RU2209838C2
СПОСОБ СМАЗКИ КОВОЧНОГО ШТАМПА ПРИ ИЗГОТОВЛЕНИИ ДЕТАЛЕЙ, ПОЛУЧАЕМЫХ ДВУМЯ ПОСЛЕДОВАТЕЛЬНЫМИ ОПЕРАЦИЯМИ, ВКЛЮЧАЮЩИМИ ЛИТЬЁ, А ЗАТЕМ КОВКУ 2012
  • Ди Серио Эмиль
  • Субра Фабьен
RU2609159C2
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ ИЗ ЗАГОТОВКИ, ВЫПОЛНЕННОЙ ИЗ ТРУДНОДЕФОРМИРУЕМОГО МЕТАЛЛА ИЛИ СПЛАВА 2014
  • Боровиков Сергей Николаевич
  • Лебедев Владимир Михайлович
  • Лебедев Максим Владимирович
  • Корякин Сергей Леонидович
  • Сидоренко Валерий Иванович
RU2589965C2
СПОСОБ ГОРЯЧЕЙ ШТАМПОВКИ ЖАРОПРОЧНЫХ ТИТАНОВЫХ СПЛАВОВ 1989
  • Ганжа С.Г.
  • Хаймович И.Р.
  • Зезюлинский А.А.
  • Педан В.П.
  • Курчаткин В.М.
RU2020020C1
Смазка для горячей обработки металлов 1980
  • Лещинский Вольф Михайлович
  • Адлова Галина Петровна
  • Херсонский Анатолий Кельманович
  • Арцев Валерий Николаевич
  • Ашихмина Виктория Константиновна
  • Гладушин Виталий Васильевич
  • Рябичева Людмила Александровна
  • Стафеев Александр Иванович
SU883161A1
КОМПОЗИЦИОННАЯ ЗАГОТОВКА ДЛЯ ГОРЯЧЕЙ ДЕФОРМАЦИИ 2002
  • Тетюхин В.В.
  • Альтман П.С.
  • Полянский С.Н.
  • Смирнов В.Г.
RU2220850C2
СПОСОБЫ СМАЗКИ ДЛЯ УЛУЧШЕНИЯ СПОСОБНОСТИ ДЕФОРМИРОВАТЬСЯ ПРИ ШТАМПОВКЕ 2011
  • Оппенхаймер,Скотт
  • Форбз Джоунс,Робин М.
  • Мантион,Джон
  • Минисандрам,Рамеш
  • Тома,Жан-Филипп
RU2572639C2

Реферат патента 2021 года ЗАЩИТНО-СМАЗОЧНЫЙ МАТЕРИАЛ ДЛЯ ГОРЯЧЕЙ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ

Изобретение относится к защитно-смазочным материалам для поковок из металлов и сплавов при их горячей пластической деформации. Материал включает ровинговую ткань и равномерно нанесенную на одну из ее сторон графитовую смазку на водной основе, при этом графитовая смазка на водной основе представляет собой водно-графитовый состав на основе коллоидного графита, причем содержание графита в пересчете на сухой остаток составляет 6-11% от поверхностной плотности защитно-смазочного материала. Техническим результатом является обеспечение стабильности размеров конструктивных элементов поковок, производимых партиями на одном комплекте технологического инструмента с использованием защитно-смазочного покрытия на основе графитсодержащей ровинговой ткани, отсутствие необходимости периодической очистки гравюры штампа от накапливаемого на рабочей поверхности графитсодержащего слоя.

Формула изобретения RU 2 756 616 C2

Защитно-смазочный материал для поковок из металлов и сплавов при их горячей пластической деформации, включающий ровинговую ткань и равномерно нанесенную на одну из ее сторон графитовую смазку на водной основе, отличающийся тем, что графитовая смазка на водной основе представляет собой водно-графитовый состав на основе коллоидного графита, при этом содержание графита в пересчете на сухой остаток составляет 6-11% от поверхностной плотности защитно-смазочного материала.

Документы, цитированные в отчете о поиске Патент 2021 года RU2756616C2

СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ НА СТАЛЬНЫЕ ИЗДЕЛИЯ 1996
  • Мальчиков Г.Д.
  • Малышева Н.С.
  • Векслина В.А.
  • Берсудский А.Л.
RU2110609C1
СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПОВАННЫХ ПОКОВОК ТУРБИННЫХ ЛОПАТОК ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ 2017
  • Кропотов Владимир Алексеевич
  • Оськин Алексей Владимирович
  • Николаева Юлия Юрьевна
RU2679157C1
Способ изотермической штамповки поковок из алюминиевых сплавов 1984
  • Баушев Николай Георгиевич
  • Бабин Евгений Георгиевич
  • Рябов Станислав Иванович
  • Гринюк Юрий Леонидович
  • Павлов Борис Всеволодович
SU1248714A1
ВСЕСОЮЗНАЯ !'1:|1:/^;:^Ш-Ти(Ш!ЧГ|!йШ• ••• ;- г -• ••"-• -^- Г" Lf л:с ;а •'••-' • LK/<i 0
  • Ю. М. Нов, Л. А. Ижванов, С. Б. Костогаров, В. С. Макеев А. Н. Пилюгин
SU373049A1
US 3254401 A, 07.06.1966
JP 4270008 A, 25.09.1992.

RU 2 756 616 C2

Авторы

Белов Владислав Валерьевич

Слукин Евгений Юрьевич

Даты

2021-10-04Публикация

2019-12-06Подача