Заявленное техническое решение относится к области создания теплопроводящих материалов и может быть использовано для сопряжения теплонапряженных поверхностей различных устройств и деталей. Эффективность переноса тепла зависит как от коэффициентов теплопроводности, так и от площадей соприкосновения поверхностей материалов. Соответственно, для обеспечения максимально возможной теплопередачи необходимо обеспечить плотный контакт между поверхностями. Поскольку поверхности любых материалов не являются абсолютно плоскими, то образуются воздушные прослойки, значительно снижающие теплоперенос в системе. Для решения этой проблемы наиболее оптимальным и широко используемым является применение теплопроводящих паст (термопаст). Более конкретно, настоящая заявка на изобретение относится к способу использования определенного состава наноструктуированной смеси, представляющей собой соединение связующего, как правило, кремнийорганического и наполнителя (теплопроводного материала), причем смесь имеет широкий температурный диапазон использования, невоспламеняема, нетоксична, не электропроводна, не портится после длительного применения и дешева.
Известна теплопроводящая паста, патент РФ № 919346, в состав которой входит 40,0-60,0 вес.%, глицерина, 38,8-53,0 вес.% алюминиевой пудры и 1,7 вес.% антистатика. Использование в качестве теплопроводящего наполнителя металлического алюминия имеет существенные недостатки. Металлический алюминий в силу высокой химической активности, особенно если учесть его порошкообразное состояние, с течением времени подвержен взаимодействием не только с сопутствующими компонентами, но и с внешней средой, содержащей химически активные составляющие. Появление поверхностных кислородсодержащих пленок на частицах металлического алюминиевого порошка резко снижает его теплопроводность, что в конечном результате ухудшает результативность данной сопрягающей пасты, применяемой для отвода тепла от теплонапряженного устройства.
Патентом US 20140240928 A1 защищена паста, согласно которому термопаста имеет теплопроводные неорганические включения, 100 частей по весу которых обработаны гидрофобным олефиликом, диаметр частиц неорганического компонента от 10 нм до 100 мкм. В качестве органического связующего используются полисилоксановые соединения, а в качестве неорганического наполнителя – нитрид алюминия.
Недостатком пасты, описанной в вышеуказанном патенте, является то, что частицы нитрида алюминия имеют круглую форму. В этом случае органическое связующее равномерно покрывает частицы нитрида алюминия и исключает прямой контакт в объёме теплопроводящей пасты. Другим недостатком является ограничение по размеру частиц теплопроводного нитрида алюминия до 100мкм. Получение мелкодисперсных порошков нитрида алюминия, имеющего высокую твердость, представляет собой энергозатратный технологический процесс. Кроме того, длительное измельчение твердого нитрида алюминия сопровождается намолом примесей футеровочного материала мельниц.
В качестве прототипа выбран патент (Теплопроводящая паста / № РФ 2651035C1, опубл. 18.04.2018), рассматривающий создание пасты, имеющей повышенную теплопроводность за счет улучшение межчастичных контактов нитрида алюминия. Теплопроводная паста содержит теплопроводный неорганический наполнитель в виде частиц нитрида алюминия и связующее в виде органического полисилоксана, причем в качестве органического полисилоксана используют полидиметилсилоксан, а частицы нитрида алюминия имеют неправильную форму размером 110-300 мкм, которые составляют 80-100 % по массе всех частиц, остальное - частицы размером до 100 нм. При этом частицы крупностью 110-300 мкм имеют строение в виде агломератов из наночастиц нитрида алюминия. Недостатком данного способа является необходимость высокого содержания порошкообразного наполнителя для обеспечения перколяционного эффекта, и как следствие, повышению теплопроводности паст.
Указанные выше недостатки отсутствуют в заявляемом техническом решении благодаря созданию перколяционной структуры вследствие введения в состав волокнистого или нановолокнистого модификатора в количестве 0,1 – 15 % от массы порошка неорганического наполнителя, что позволяет достичь увеличения теплопроводности паст вплоть до 600 %.
Технический результат, достигаемый при реализации изобретения, заключается в повышении теплофизических характеристик теплопроводной пасты вплоть до 600 %. Подобное явление носит название перколяционного эффекта.
Заявляемая полимерная композиционная теплопроводная паста для сопряжения теплонапряженных устройств и деталей содержит неорганический наполнитель и органический полидиметилсилоксан в качестве связующего. Паста отличается тем, что с целью улучшения теплопроводящих свойств содержит волокнистый или нановолокнистый модификатор в количестве от 0,1 до 15 % от массы порошка неорганического наполнителя.
Причем в качестве неорганического наполнителя используется один или несколько материалов, выбранных из ряда материалов, обладающих теплопроводностью не менее чем в 100 раз больше, чем теплопроводность связующего материала, например, алюминий, графит, нитрид алюминия, карбид кремния или др. Применение нескольких различных наполнителей позволяет ввиду разного размера частиц и адгезии к органическому полидиметилсилоксану эффективно заполнять октаэдрические и тетраэдрические пустоты между более крупными частицами, тем самым увеличивая максимальную степень наполнения пасты.
Модификатор выполняется предпочтительно из углеродных нанотрубок (УНТ) или волокнистого кремния. обладающих высокой теплопроводностью от 150 до 3500 Вт/(м·К), ярко выраженной анизотропной структурой, обеспечивающей формирование «теплопроводных мостиков» между сферическими частицами и высоким сродством к органическому связующему.
Сущность заявляемого изобретения поясняется фигурами, где изображены:
- на фиг. 1 - микроволокна, распределенные в объеме связующего и сформировавшие микроструктуру с повышенными теплофизическими свойствами;
- на фиг. 2 - таблица с данными, характеризующими примеры осуществления изобретения.
Полимерная композиционная теплопроводная паста содержит теплопроводный неорганический наполнитель в виде, например, частиц нитрида алюминия и/или графита, связующее в виде органического полисилоксана. Причем в качестве органического полисилоксана используют полидиметилсилоксан и волокнистый или нановолокнистый модификатор в количестве от 0,1 до 15 % от массы порошка неорганического наполнителя.
Применение волокнистых и нановолокнистых модификаторов в количестве от 0,1 до 15 % от массы порошка неорганического наполнителя для обеспечения создания максимального количества путей для передачи тепла вследствие формирования перколяционных кластеров в объеме теплопроводной пасты, что приводит к значительному возрастанию теплопроводности пасты, как изображено на фигуре 1. Увеличение содержания волокнистого и нановолокнистого модификаторов более 15 % приводит к потере механических свойств и невозможности применения для сопряжения теплонапряженных поверхностей.
Для подтверждения возможности реализации изобретения и достижения заявленного технического результата рассмотрим примеры его осуществления, основные данные которых представлены в таблице на фигуре 2.
Пример 1
Теплопроводная паста, состоящая из неорганического наполнителя в виде частиц нитрида алюминия, составляющих 77 % по массе, и связующего полидиметилсилоксана, имела теплопроводность не выше 1,09 Вт/(м⋅К).
Пример 2
Теплопроводная паста, содержащая 75 % по массе наполнителя, состоящего из частиц нитрида алюминия и 15 % волокон кремния, остальное – связующее (полидиметилсилоксан), имела теплопроводность не ниже 2,5 Вт/(м⋅К).
Пример 3
Теплопроводная паста, состоящая из неорганического теплопроводящего наполнителя 50 % по массе в виде частиц нитрида алюминия и графита (1:1 по массе) и многостенных углеродных нанотрубок в количестве 15 % от массы всех частиц, имела теплопроводность более 6,0 Вт/(м⋅К).
Пример 4
Теплопроводная паста, состоящая из неорганического теплопроводного наполнителя, составляющего 80% по массе в виде карбида кремния и 7 % от массы всех частиц волокон кремния, остальное – связующее (полидиметилсилоксан), имела теплопроводность не менее 4,9 Вт/(м⋅К).
Таким образом, применение волокнистого и нановолокнистого модификатора в количестве от 0,1 до 15 % от массы порошка неорганического наполнителя резко повышают теплофизические характеристики теплопроводной пасты вплоть до 600 %.
название | год | авторы | номер документа |
---|---|---|---|
ТЕПЛОПРОВОДНАЯ ПАСТА ДЛЯ СОПРЯЖЕНИЯ ТЕПЛОНАПРЯЖЕННЫХ УСТРОЙСТВ И ДЕТАЛЕЙ | 2021 |
|
RU2767031C1 |
Теплопроводящая паста | 2016 |
|
RU2651035C1 |
Диэлектрическая теплопроводная паста и способ ее приготовления | 2020 |
|
RU2771023C1 |
Электропроводная теплопроводная паста и способ её приготовления | 2021 |
|
RU2772487C1 |
Электропроводная теплопроводная паста и способ её приготовления | 2023 |
|
RU2813987C1 |
Теплопроводная кремнийорганическая паста | 2021 |
|
RU2782060C1 |
КОМПОЗИЦИОННЫЙ ТЕПЛОПРОВОДЯЩИЙ МАТЕРИАЛ НА ОСНОВЕ НАНОЖИДКОСТИ | 2020 |
|
RU2764219C1 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ РАДИАТОРОВ ОХЛАЖДЕНИЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ (СИД) И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2012 |
|
RU2522573C2 |
СПОСОБ ПОЛУЧЕНИЯ ПРИЖИМНОЙ ПОДУШКИ | 2018 |
|
RU2726546C1 |
Способ получения дискретно-армированного композитного материала | 2021 |
|
RU2794758C1 |
Изобретение относится к области создания теплопроводящих материалов. Предложена полимерная композиционная теплопроводная паста для сопряжения теплонапряженных различных устройств и деталей, которая содержит теплопроводный неорганический наполнитель, выбранный из нитрида алюминия, карбида кремния и/или графита, связующее в виде органического полидиметилсилоксана и волокнистый или нановолокнистый модификатор, выбранный из углеродных нанотрубок и волокнистого кремния, взятый в количестве от 0,1 до 15 % от массы порошка неорганического наполнителя. Технический результат заключается в повышении теплопроводности за счет образования перколяционных кластеров в объеме пасты. 1 з.п. ф-лы, 2 ил., 4 пр.
1. Полимерная композиционная теплопроводная паста для сопряжения теплонапряженных устройств и деталей, содержащая неорганический наполнитель и органический полидиметилсилоксан в качестве связующего, отличающаяся тем, что в качестве неорганического наполнителя используется один или несколько материалов, выбранных из графита, нитрида алюминия и карбида кремния, а также паста содержит волокнистый или нановолокнистый модификатор, выбранный из углеродных нанотрубок или волокнистого кремния, в количестве от 0,1 до 15 % от массы порошка неорганического наполнителя.
2. Паста по п.1, отличающаяся тем, что в качестве неорганического наполнителя используется один или несколько материалов с теплопроводностью не менее чем в 100 раз больше, чем теплопроводность связующего.
Теплопроводящая паста | 2016 |
|
RU2651035C1 |
Полимерный теплопроводящий композиционный материал | 2015 |
|
RU2614334C1 |
ТЕПЛОПРОВОДНАЯ ПАСТА НА ОСНОВЕ СВЕРХРАЗВЕТВЛЕННОЙ ОЛЕФИНОВОЙ ТЕКУЧЕЙ СРЕДЫ | 2014 |
|
RU2672247C2 |
US 20140240928 A1, 28.08.2014 | |||
Сталь | 1979 |
|
SU823451A1 |
Авторы
Даты
2021-10-12—Публикация
2019-12-26—Подача