ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к медицине, а именно к потенцированию действия антибиотиков и может быть использовано для лечения ран кожного покрова и мягких тканей, инфицированных множественно-устойчивыми бактериями.
УРОВЕНЬ ТЕХНИКИ
Известен магнитный нанокомпозит, раскрытый в [RU 2565677, опубл. 20.10.2015]. Магнитный нанокомпозит имеет структуру «ядро-оболочка-матрица», где ядром являются наночастицы железа с подавляющим преобладанием железа в нульвалентном состоянии Fe⁰ (74,5%), и его оксидов 25,5%, оболочкой, покрывающей наночастицы, является феррит, а матрицей - пироуглерод в состоянии в sp2-гибридизации. Общее содержание железа Fe⁰ в полученном магнитном нанокомпозите материале составляет 31,01-38,25%, намагниченность насыщения составляет 3-59 Гс•см3/г.
К недостаткам можно отнести наличие гидрофобного углеродного слоя на поверхности частиц, ухудшающего мембранотропные свойства наночастиц.
В статье авторов You Qiang, Jiji Antony, Amit Sharma, Joseph Nutting, Daniel Sikes and Daniel Meyer [Iron/iron oxide core-shell nanoclusters for biomedical applications // Journal of Nanoparticle Research (2006) 8: 489–496] описаны наночастицы размером до 100 нм со структурой «ядро-оболочка», где ядро – это железо, а оболочка – оксид железа толщиной примерно 2,5 нм независимо от размера частиц. Описанные наночастицы предлагается использовать в биомедицинских приложениях как контраст, для разделения клеток или доставки лекарств.
К недостатком таких частиц можно отнести низкую величину дзета-потенциала наночастиц, обусловленную тонкой оксидной оболочкой на поверхности железного ядра, которая не обеспечивает мембранотропные свойства наночастиц.
Известно применение пористых наноструктур Fe2O3 для преодоления устойчивости бактерий к антибиотикам [RU 2720238 C1, опубл.: 28.04.2020] раскрытие которого основано на неожиданном наблюдении, что пористые наноструктуры Fe2O3 (гематит), имеющие удельную поверхность не менее 50 м2/г; положительный дзета-потенциал, у которых отношение объема мезопор к объему микропор больше или равно 2 обладают свойством повышать чувствительность резистентных штаммов бактерий к антибиотикам.
К недостаткам данного применения (или частиц) можно отнести то, что такие структуры оказывают потенцирующее действие при высокой концентрации наноструктур – не менее 1 мг/мл и антибиотика – 50 мкг/мл.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Настоящее раскрытие основано на неожиданном наблюдении, что наночастицы Fe-Fe3O4 со структурой ядро-оболочка, имеющие положительный дзета-потенциал в деионизованной воде при рН 7,4 и температуре 37 °С от +3,6 мВ до +10,4 мВ; средний размер частиц менее 100 нм; величину удельной поверхности от 6,7 м2/г до 9,3 м2/г, содержание оксида железа от 3 до 92 масс.%, обладают свойством повышать чувствительность бактерий к антибиотикам.
Задачей настоящего изобретения является применение вышеописанных наночастиц Fe-Fe3O4 для снижения действующей концентрации антибиотиков за счёт повышения чувствительности бактерий, в том числе резистентных штаммов, к лекарственным препаратам.
Технический результат - уменьшение дозы антибиотика, возможность применения низкотоксичных антибиотиков, повышение эффективности лечения.
Поставленная задача достигается тем, что наночастицы Fe-Fe3O4 (железо-оксид железа) со структурой ядро-оболочка, где ядро это Fe, а оболочка – Fe3O4, имеющие положительный дзета-потенциал в деионизованной воде при рН 7,4 и температуре 37 °С от +3,6 мВ до +10,4 мВ, величину удельной поверхности от 6,7 м2/г до 9,3 м2/г, содержание оксида железа от 3 до 92 масс.% применяют в качестве средства повышения чувствительности бактерий, в том числе резистентных штаммов, к антибиотикам.
При этом содержание оксида железа (Fe3O4) предпочтительно составляет не менее 39 масс.% при толщине оболочки оксида железа, предпочтительно составляющей не менее 3 нм.
При этом толщина оболочки оксида железа, составляет не менее 3 нм.
Предпочтительно, что величина дзета-потенциала наночастиц в деионизованной воде при рН 7,4 и температуре 37 °С составляет от 8 мВ до 13 мВ.
Предпочтительно, что средний размер частиц составляет не менее 100 нм; предпочтительно 60-80 нм.
Причем упомянутые структуры используют в качестве средства повышения чувствительности как грамположительной, так и грамотрицательной бактерии к антибиотикам.
Кроме того, бактерия представляет собой грамотрицательную и выбрана из родов Pseudomonas aeruginosa, которая устойчива к ампициллину.
Кроме того, бактерия представляет собой грамположительную и выбрана из рода Staphylococcus aureus и представляет собой клинический штамм или клинический изолят метициллин-резистентный золотистый стафилококк (MRSA), который устойчив к ампициллину.
При этом антибиотик выбран из β-лактамов, например, ампициллин, и из аминогликозидов, например, амикацин.
Синергетический потенцирующий эффект (когда концентрация живых клеток после инкубированияя меньше 50 % относительно контроля) по отношению к MRSA достигается при использовании концентрации наночастиц от 0,025 до 0,075 мг/мл, и ампициллина с концентрацией не менее 16 мкг/мл или амикацина с концентрацией не менее 8 мкг/мл. По отношению к P. aeruginosa синергетический потенцирующий эффект достигается при использовании концентрации наночастиц от 0,05 до 0,125 мг/мл и ампициллина с концентрацией не менее 64 мкг/мл или амикацина с концентрацией не менее 8 мкг/мл.
Потенцирующим действием обладают наночастицы Fe-Fe3O4, содержащие не менее 39 масс.% Fe3O4. Это связано с величиной дзета-потенциала наночастиц, которая для данных наночастиц в деионизованной воде при рН 7,4 и температуре 37 °С составляет 9,6±1,8 мВ. Положительный дзета-потенциал наночастиц способствует более интенсивной адгезии к отрицательно заряженным бактериальным мембранам, что, в свою очередь, приводит к деполяризации мембран и более интенсивному проникновению антибиотика к мишеням действия, более интенсивному проникновению наночастиц вместе с антибиотиками внутрь бактерий, а также нарушению защитных функций бактерий, например инактивации ферментов, отвечающих за выработку бета-лактамазы.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Сущность изобретения поясняется также нижеприведенными примерами конкретного выполнения.
В таблице 1 представлены основные характеристики использованных синтезированных наночастиц для оценки их антимикробной активности.
Таблица 1 – Характеристики наночастиц Fe-Fe3O4
Пример 1
Оценка антимикробной активности наночастиц в комбинации с ампициллином или амикацином по отношению к метициллин-резистентному золотистому стафилококку (MRSA), штамм AATCC 43300.
Для оценки потенцирующей способности наночастиц по отношению к ампициллину или амикацину определяли дозы наночастиц и антибиотиков, при которых выживает не более 50 % бактерий (IC50). В исследовании использовали суточную культуру MRSA. При определении IC50 наночастиц, 1 мл бактериальной культуры MRSA в концентрации 5×105 КОЕ/мл помещали в 3 мл бульона Мюллера-Хинтона, содержащего наночастицы в концентрации: 2000, 1000, 500, 400, 300, 200, 100 мкг/мл. Суспензию наночастиц и бактерий встряхивали в орбитальном шейкере и инкубировали в течение 24 часов при 37 °С.
При определении IC50 антибиотиков, 1 мл бактериальной культуры MRSA в концентрации 5×105 КОЕ/мл помещали в 3 мл бульона Мюллера-Хинтона, содержащего антибиотик в концентрации: 256, 128, 64, 32, 16, 8, 4 мкг/мл. Суспензию бактерий с антибиотиком встряхивали в орбитальном шейкере и инкубировали в течение 24 часов при 37 °С.
После инкубирования, методом серийных разведений высевали содержимое пробирок на чашки Петри с питательным агаром, инкубировали в течение 24 часов при 37 °С, осуществляли подсчет колоний и определяли количество выживших бактерий после инкубирования с наночастицами или антибиотиками. Концентрацию, при которой выжило 50 % бактерий, принимали за IC50. Для подтверждения достоверности результатов исследования проводили с шестикратным повторением.
Результаты представлены в таблице 2.
Таблица 2 – Антибактериальная активность наночастиц Fe-Fe3O4 по отношению к MRSA
Результаты, представленные в таблице 2, показывают, что выживаемость бактерий MRSA составляет 50% при применении наночастиц Fe-Fe3O4 в концентрации 200 мкг/мл. Для ампициллина эта концентрация составляет 32 мкг/мл, а для амикацина – 16 мкг/мл.
Для оценки комбинированного воздействия использовали наночастицы в концентрации 75, 50, 25 мкг/мл (ниже IC50 более, чем в 2 раза), при которых наблюдается низкий ингибирующий эффект (эффект подавления роста бактерий) и субоптимальные концентрации антибиотиков – 16 мкг/мл для ампициллина и 8 мкг/мл для амикацина (в 2 раза ниже IC50).
Для этого использовали суточную культуру MRSA. 1 мл бактериальной культуры MRSA в концентрации 5×105 КОЕ/мл помещали в 2 мл бульона Мюллера-Хинтона, чтобы концентрация наночастиц составляла 75, 50 и 25 мкг/мл.
Далее, в пробирки добавляли 1 мл раствора антибиотика, так, чтобы концентрация ампициллина в пробирках составила 16 мкг/мл, а амикацина – 8 мкг/мл, и инкубировали в течение 24 часов при 37 °С.
После инкубирования, методом серийных разведений высевали содержимое пробирок на чашки Петри с питательным агаром, инкубировали в течение 24 часов при 37 °С, осуществляли подсчет колоний и определяли комбинацию наночастиц и антибиотика, при концентрации которых выживало не более 50 % бактерий. Для подтверждения достоверности результатов исследования проводили с шестикратным повторением.
Результаты представлены в таблице 3.
Таблица 3 – Комбинированное антибактериальное действие наночастиц Fe-Fe3O4 с антибиотиками по отношению к MRSA.
16 мкг/мл
8 мкг/мл
* Результаты из эксперимента по определению IC50 наночастиц и IC50 антибиотиков
Комбинированное применение наночастиц, содержащих 3 и 19 масс. % Fe3O4 и ампициллина или амикацина не приводит к существенному подавлению роста бактерий по сравнению с их раздельным применением. Следовательно, при инкубировании бактерий MRSA в комбинации с антибиотиками и наночастицами с тонкой оксидной пленкой толщиной не более 3,9 нм в диапазоне концентраций наночастиц от 25 мкг/мл до 75 мкг/мл не наблюдается потенцирующее синергетическое действие.
Комбинированное применение наночастиц, содержащих 39 и 92 масс % Fe3O4 и ампициллина или амикацина приводит к существенному подавлению роста бактерий по сравнению с их раздельным применением. При инкубировании бактерий MRSA в комбинации с антибиотиками и наночастицами в диапазоне концентраций наночастиц от 25 мкг/мл до 75 мкг/мл наблюдается потенцирующее синергетическое действие.
Пример 2
Оценка антимикробной активности наночастиц в комбинации с ампициллином или амикацином по отношению к синегнойной палочке P.aeruginosa, штамм ATCC 9027.
Для оценки потенцирующей способности наночастиц по отношению к ампициллину или амикацину определяли дозы наночастиц и антибиотиков, при которой выживает не более 50 % бактерий (IC50). В исследовании использовали суточную культуру P.aeruginosa.
При определении IC50 наночастиц, 1 мл бактериальной культуры P.aeruginosa в концентрации 5×105 КОЕ/мл помещали в 3 мл бульона Мюллера-Хинтона, содержащего наночастицы в концентрации: 2000, 1000, 500, 400, 300, 200, 100 мкг/мл. Суспензию наночастиц и бактерий встряхивали в орбитальном шейкере и инкубировали в течение 24 часов при 37 °С.
При определении IC50 антибиотиков, 1 мл бактериальной культуры P.aeruginosa в концентрации 5×105 КОЕ/мл помещали в 3 мл бульона Мюллера-Хинтона, содержащего антибиотик в концентрации: 256, 128, 64, 32, 16, 8, 4 мкг/мл. Суспензию бактерий с антибиотиком встряхивали в орбитальном шейкере и инкубировали в течение 24 часов при 37 °С.
После инкубирования, методом серийных разведений высевали содержимое пробирок на чашки Петри с питательным агаром, инкубировали в течение 24 часов при 37 °С, осуществляли подсчет колоний и определяли количество выживших бактерий после инкубирования с наночастицами или антибиотиками. Концентрацию, при которой выжило 50 % бактерий, принимали за IC50. Для подтверждения достоверности результатов исследования проводили с шестикратным повторением.
Результаты представлены в таблице 4.
Таблица 4 – Антимикробная активность наночастиц Fe-Fe3O4 по отношению к P.aeruginosa
Результаты, представленные в таблице 4, показывают, что выживаемость бактерий P.aeruginosa составляет 50% при применении наночастиц Fe-Fe3O4 в концентрации 500 мкг/мл. Для ампициллина эта концентрация составляет 128 мкг/мл, а для амикацина – 16 мкг/мл.
При комбинированном воздействии с антибиотиками использовали наночастицы в концентрации 125, 75, 50 мкг/мл (ниже IC50 более, чем в 2 раза), при которых наблюдается низкий ингибирующий эффект (эффект подавления роста бактерий) и субоптимальные концентрации антибиотиков – 64 мкг/мл для ампициллина и 8 мкг/мл для амикацина (в 2 раза ниже IC50).
Для этого использовали суточную культуру P.aeruginosa. 1 мл бактериальной культуры P.aeruginosa в концентрации 5×105 КОЕ/мл помещали в 2 мл бульона Мюллера-Хинтона, содержащего наночастицы в концентрации 125, 75 или 50 мкг/мл.
Далее, в пробирки добавляли 1 мл раствора антибиотика, так чтобы концентрация ампициллина в пробирках составила 64 мкг/мл, а амикацина – 8 мкг/мл и инкубировали в течение 24 часов при 37 °С.
После инкубирования, методом серийных разведений высевали содержимое пробирок на чашки Петри с питательным агаром, инкубировали в течение 24 часов при 37 °С, осуществляли подсчет колоний и определяли комбинацию наночастиц и антибиотика, при концентрации которых выживало не более 50 % бактерий. Для подтверждения достоверности результатов исследования проводили с шестикратным повторением.
Результаты представлены в таблице 5.
Таблица 5 – Комбинированное антимикробное действие наночастиц Fe-Fe3O4 с антибиотиками по отношению к P.aeruginosa
64 мкг/мл
8 мкг/мл
* Результаты из эксперимента по определению IC50 наночастиц и IC50 антибиотиков
Комбинированное применение наночастиц, содержащих 3 и 19 масс. % Fe3O4 и ампициллина или амикацина не приводит к существенному подавлению роста бактерий по сравнению с их раздельным применением. Следовательно, при инкубировании бактерий P.aeruginosa в комбинации с антибиотиками и наночастицами с тонкой оксидной пленкой толщиной не более 3,9 нм в диапазоне концентраций наночастиц от 50 мкг/мл до 125 мкг/мл не наблюдается потенцирующее синергетическое действие.
Комбинированное применение наночастиц, содержащих 39 и 92 масс % Fe3O4 и ампициллина или амикацина приводит к существенному подавлению роста бактерий по сравнению с их раздельным применением.
При инкубировании бактерий P.aeruginosa в комбинации с антибиотиками и наночастицами в диапазоне концентраций наночастиц от 50 мкг/мл до 125 мкг/мл наблюдается потенцирующее синергетическое действие.
название | год | авторы | номер документа |
---|---|---|---|
ПРИМЕНЕНИЕ ПОРИСТЫХ НАНОСТРУКТУР Fe2O3 ДЛЯ ПРЕОДОЛЕНИЯ УСТОЙЧИВОСТИ БАКТЕРИЙ К АНТИБИОТИКАМ | 2019 |
|
RU2720238C1 |
Применение низкоразмерных двумерных (2D) складчатых структур оксигидроксида алюминия (ALOOH) для преодоления устойчивости бактерий к антибиотикам | 2018 |
|
RU2705989C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРНЫХ ДВОЙНЫХ ГИДРОКСИДОВ НА ОСНОВЕ АЛЮМИНИЯ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ, ТАКИХ КАК МАГНИЙ ИЛИ КАЛЬЦИЙ, ОБЛАДАЮЩИХ СВОЙСТВОМ ПОВЫШАТЬ pH КЛЕТОЧНОЙ СРЕДЫ, И НАНОСТРУКТУРЫ, ПОЛУЧЕННЫЕ ДАННЫМ СПОСОБОМ | 2020 |
|
RU2758671C1 |
АГЛОМЕРАТЫ ОКСИГИДРОКСИДОВ МЕТАЛЛОВ И ИХ ПРИМЕНЕНИЕ | 2013 |
|
RU2560432C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ Fe-FeO СО СТРУКТУРОЙ ЯДРО-ОБОЛОЧКА И НАНОЧАСТИЦА, ПОЛУЧЕННАЯ ДАННЫМ СПОСОБОМ | 2020 |
|
RU2752167C1 |
Способ разрушения и предотвращения образования бактериальных биопленок комплексом антимикробных пептидов насекомых | 2017 |
|
RU2664708C1 |
МАГНИТНЫЕ НАНОЧАСТИЦЫ, ФУНКЦИОНАЛИЗИРОВАННЫЕ ПИРОКАТЕХИНОМ, ИХ ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ | 2015 |
|
RU2687497C2 |
НАНОКОНЪЮГАТЫ ДОКСОРУБИЦИН-ЗОЛОТО НАПРАВЛЕННОГО ВОЗДЕЙСТВИЯ ДЛЯ ТЕРАПИИ ОПУХОЛЕЙ | 2018 |
|
RU2773707C2 |
КОМПОЗИЦИИ И СПОСОБЫ ЛЕЧЕНИЯ, ВКЛЮЧАЮЩИЕ ЦЕФТАРОЛИН | 2009 |
|
RU2524665C2 |
КОНТРАСТНОЕ СРЕДСТВО | 1994 |
|
RU2147243C1 |
Изобретение относится к области медицины и фармацевтики, а именно к применению наночастиц Fe-Fe3O4 (железо-оксид железа) со структурой ядро-оболочка, где ядро – это Fe, а оболочка – Fe3O4, в качестве средства повышения чувствительности бактерий резистентных штаммов, таких как Pseudomonas aeruginosa и Staphylococcus aureus, к антибиотикам, таким как ампициллин и амикацин, при лечении ран, причем наночастицы выбраны из 1) имеющих положительный дзета-потенциал в деионизованной воде при рН 7,4 и температуре 37 °С 9,6±1,8 мВ, величину удельной поверхности 6,7±0,9 м2/г, содержание оксида железа (Fe3O4) 39 масс.% и средний размер частиц 81±5 нм или 2) имеющих положительный дзета-потенциал в деионизованной воде при рН 7,4 и температуре 37 °С 10,4±2,3 мВ, величину удельной поверхности 7,3±0,8 м2/г, содержание оксида железа (Fe3O4) 92 масс.% и средний размер частиц 78±3 нм. Технический результат заключается в уменьшении дозы антибиотика, возможности применения низкотоксичных антибиотиков, повышении эффективности лечения. 6 з.п. ф-лы, 5 табл., 2 пр.
1. Применение наночастиц Fe-Fe3O4 (железо-оксид железа) со структурой ядро-оболочка, где ядро - это Fe, а оболочка - Fe3O4, в качестве средства повышения чувствительности бактерий резистентных штаммов к антибиотикам при лечении ран, причем наночастицы выбраны из
1) имеющих положительный дзета-потенциал в деионизованной воде при рН 7,4 и температуре 37 °С 9,6±1,8 мВ, величину удельной поверхности 6,7±0,9 м2/г, содержание оксида железа (Fe3O4) 39 масс.% и средний размер частиц 81±5 нм или
2) имеющих положительный дзета-потенциал в деионизованной воде при рН 7,4 и температуре 37 °С 10,4±2,3 мВ, величину удельной поверхности 7,3±0,8 м2/г, содержание оксида железа (Fe3O4) 92 масс.% и средний размер частиц 78±3 нм.
2. Применение по п. 1, отличающееся тем, что наночастицы используют в качестве средства повышения чувствительности как грамположительных, так и грамотрицательных бактерий к антибиотикам.
3. Применение по п. 2, отличающееся тем, что грамотрицательные бактерии представляют собой бактерии Pseudomonas aeruginosa, которые устойчивы к ампициллину.
4. Применение по п. 2, отличающееся тем, что грамположительные бактерии представляют собой бактерии Staphylococcus aureus, выбранные из клинического штамма или клинического изолята метициллин-резистентного Staphylococcus aureus (MRSA), который устойчив к ампициллину.
5. Применение по п. 1 или 2, отличающееся тем, что антибиотик выбран из β-лактамов, например, ампициллина, или из аминогликозидов, например, амикацина.
6. Применение по п. 1, отличающееся тем, что для достижения синергетического потенцирующего эффекта по отношению к Staphylococcus aureus (MRSA) используют концентрацию наночастиц от 0,025 до 0,075 мг/мл и ампициллин с концентрацией 16 мкг/мл или амикацин с концентрацией 8 мкг/мл.
7. Применение по п. 1, отличающееся тем, что для достижения синергетического потенцирующего эффекта по отношению к Pseudomonas aeruginosa используют концентрацию наночастиц от 0,05 до 0,125 мг/мл и ампициллин с концентрацией 64 мкг/мл или амикацин с концентрацией 8 мкг/мл.
ПРИМЕНЕНИЕ ПОРИСТЫХ НАНОСТРУКТУР Fe2O3 ДЛЯ ПРЕОДОЛЕНИЯ УСТОЙЧИВОСТИ БАКТЕРИЙ К АНТИБИОТИКАМ | 2019 |
|
RU2720238C1 |
АГЛОМЕРАТЫ ОКСИГИДРОКСИДОВ МЕТАЛЛОВ И ИХ ПРИМЕНЕНИЕ | 2013 |
|
RU2560432C2 |
Применение низкоразмерных двумерных (2D) складчатых структур оксигидроксида алюминия (ALOOH) для преодоления устойчивости бактерий к антибиотикам | 2018 |
|
RU2705989C1 |
КАЗАНЦЕВ С | |||
О | |||
и др | |||
Синтез и свойства низкоразмерных наноструктур на основе оксида железа // Перспективы развития фундаментальных наук: сборник научных трудов XV Международной конференции студентов, аспирантов и молодых ученых, г | |||
Томск, 24-27 апреля 2018 г | |||
Т | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
2021-11-29—Публикация
2020-12-14—Подача