Система заправки ракеты жидким кислородом Российский патент 2022 года по МПК B64G5/00 

Описание патента на изобретение RU2767405C2

Изобретение относится к авиационно-космической технике, а также к технике хранения и распределения газов и жидкостей.

Известен топливный баллон с криогенной заправкой, включающий внешний сосуд высокого давления и внутренний сосуд без перепада давления, полость которого соединена с магистралью заправки и опорожнения, а в верхней части сообщена с полостью сосуда высокого давления, на внешнюю поверхность внутреннего сосуда нанесена теплоизоляция, а сообщение между полостями сосудов выполнено в виде отверстий в верхней части внутреннего сосуда. (Патент РФ 2163699, МПК F17C 9/02, опубл. 27.02.2001). Недостатком этого устройства является отсутствие возможности получения дополнительной электрической энергии при эксплуатации баллона.

Известна принципиальная схема заправочной системы ракеты «Союз» жидким кислородом (Архаров A.M., Кунис И.Д. Криогенные заправочные системы стартовых ракетно-космических комплексов. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006, с. 60-65), включающая в себя:

- резервуары хранилища жидкого кислорода с пятью горизонтальными цилиндрическими резервуарами объемом 119 м3 каждый резервуар имеет порошково-вакуумную изоляцию, с соответствующей обвязкой и арматурой, хранилища содержат четыре центробежных кислородных насоса и два воздушных испарителя наддува, поддерживающих в этих резервуарах давление не менее 0,04 МПа, достаточное для бескавитационной работы насосов, а также газоразливочную эстакаду, имеющую дренажные трубопроводы сливного коллектора и заправочные колонки;

- криогенные и некриогенные изолированные трубопроводы снабженные ручной и дистанционно управляемой арматурой, фильтрами и узлами установки приборов;

- кольцевой коллектор для распределения жидкого кислорода по блокам ракеты, снабженный обвязкой и клапанами для ее каждого блока, узлами стыковки системы заправки с ракетой; от кольцевого коллектора сделаны отводы коммуникаций для заправки жидким кислородом головных блоков И и Л, снабженных своими блоками клапанов;

- оборудование дренажной площадки, включающее дренажные трубопроводы, резервуар для приема жидкого кислорода и газа подаваемого из кольцевого коллектора и блок клапанов, это оборудование работает при захолаживании этого оборудования, а также после окончании заправки ракеты, с последующей газификацией криопродукта и сбросом в атмосферу выделяющихся паров;

- средства пневмоуправления служащие для подачи газа (воздуха) и управления арматурой, которые состоят из пневмощитов управления и трубопроводов с арматурой;

- средства измерения и контроля параметров жидкого кислорода, включающие датчики давления, уровня, его температуры и расхода.

Данная схема заправки ракеты жидким кислородом принята в качестве прототипа предполагаемого изобретения.

Недостатком прототипа является отсутствие выработки электрической энергии в описанной заправочной системе ракеты «Союз».

Задачей изобретения является обеспечение выработки в предлагаемой системе заправки ракеты жидким кислородом дополнительной электрической энергии за счет использования тепла атмосферного воздуха. Для этого предлагается использовать в системе заправки ракеты систему наддува резервуаров, содержащую дополнительный баллон с криогенной заправкой, состоящий из внешнего сосуда высокого давления и внутреннего сосуда, заполненный жидким кислородом. Предлагаемая система наддува может работать не только на кислороде, но и на других криогенных веществах, таких как азот, гелий и других (далее - криопродукт). Особенность баллона с криогенной заправкой заключается в том, что он может заправляться как жидким, так и газообразным криопродуктом. В случае заправки баллона газом он будет работать как обычный баллон высокого давления, а в случае заправки жидким криопродуктом, газификация жидкого криопродукта будет происходить непосредственно внутри этого баллона, что позволит производить его заправку при меньшем уровне давления. Это техническое решение альтернативно известной системе наддува, в которой используются два воздушных испарителя наддува.

Поставленная задача достигается за счет того, что система заправки ракеты жидким кислородом, содержащая резервуары хранилища жидкого кислорода, центробежные кислородные насосы, криогенные и не криогенные изолированные трубопроводы, кольцевой коллектор для распределения жидкого кислорода по блокам ракеты, оборудование дренажной площадки с дренажными трубопроводами, резервуаром для приема жидкого кислорода и газа подаваемого из кольцевого коллектора, средства пневмоуправления, средства измерения и контроля параметров жидкого кислорода, согласно изобретению система заправки ракеты жидким кислородом снабжена системой наддува, состоящей из трубопровода наддува, дополнительного баллона с криогенной заправкой криопродуктом, насоса криопродукта, трубопровода жидкого криопродукта, испарителем жидкого криопродукта, газопроводом, трехходовым краном, трубопроводом хладагента, насосом хладагента, испарителем хладагента, вентилятором атмосферного воздуха, турбиной, электрогенератором; в корпусе испарителя жидкого криопродукта размещены две теплообменные поверхности, вход его первой теплообменной поверхности связан с насосом жидкого криопродукта, а ее выход связан с трехходовым клапаном, вход второй теплообменной поверхности испарителя жидкого криопродукта связан с выходом турбины, а ее выход связан с насосом хладагента; испаритель хладагента имеет одну теплообменную поверхность, вход этой поверхности связан по хладагенту с насосом хладагента, а ее выход связан с входом турбины; вход вентилятора атмосферного воздуха связан с атмосферой, а его выход с корпусом испарителя хладагента.

Сущность изобретения поясняется чертежом Фиг. 1. Система заправки ракеты жидким кислородом содержит:

1 - резервуары хранилища жидкого кислорода, 2 - центробежные кислородные насосы, 3 - трубопровод заправки ракеты жидким кислородом, 4 - трубопровод наддува, 5 - дополнительный баллон с криогенной заправкой, 6 - насос криопродукта, 7 - трубопровод жидкого криопродукта, 8 - испаритель жидкого крипродукта, 9 - газопровод, 10 - трехходовой клапан, 11 - трубопровод хладагента, 12 - насос хладагента, 13 - испаритель хладагента, 14 - турбина, 15 - электрогенератор, 16 - вентилятор атмосферного воздуха.

Внутренний сосуд дополнительного баллона с криогенной заправкой 5 связан трубопроводом жидкого криопродукта 7 через насос криопродукта 6 с входом первой теплообменной поверхности испарителя жидкого криопродукта 8, а ее выход связан газопроводом 9 через трехходовой клапан 10 с внешним сосудом дополнительного баллона с криогенной заправкой 5. Внешний сосуд дополнительного баллона с криогенной заправкой 5 связан с резервуарами хранилища 1 трубопроводом наддува 4. Кроме того, выход первой теплообменной поверхности испарителя жидкого криопродукта 8 также связан газопроводом 9 с резервуарами хранилища 1 через трехходовой клапан 10 и трубопровод наддува 4. Вход второй теплообменной поверхности испарителя жидкого криопродукта 8 трубопроводом хладагента И с испарителем хладагента 13 и турбиной 14, а выход второй теплообменной поверхности связан с насосом хладагента 12 через трубопровод хладагента 11. Вход вентилятора атмосферного воздуха 16 связан с атмосферой, а его выход с корпусом испарителя хладагента 13.

Турбина 14 связана общим валом с электрогенератором 15.

Резервуары хранилища жидкого кислорода 1 связаны трубопроводом заправки ракеты жидким кислородом 3 с системой заправки ракеты через центробежные кислородные насосы 2.

Работа системы заправки ракеты жидким кислородом осуществляется следующим образом.

Жидкий кислород из резервуаров хранилища жидкого кислорода 1 с помощью центробежных кислородных насосов 2 по трубопроводу заправки ракеты жидким кислородом 3 подается в систему заправки ракеты. В целях обеспечения безкавитационной работы центробежных кислородных насосов 2 газ для наддува резервуаров хранилища жидкого кислорода 1 подается по трубопроводу наддува 4 из системы наддува. Система наддува содержит дополнительный баллон с криогенной заправкой 5, который заправляется жидким криопродуктом (кислород, азот, гелий и другие). За счет естественных теплопритоков часть жидкого криопродукта в дополнительном баллоне с криогенной заправкой 5 газифицируется. Жидкий криопродукт из дополнительного баллона с криогенной заправкой 5 подается с помощью насоса криопродукта 6 по трубопроводу жидкого криопродукта 7 в первую теплообменную поверхность криопродукта 8, в которой жидкий криопродукт газифицируется, газификация жидкого криопродукта в первой теплообменной поверхности испарителя жидкого криопродукта 8 происходит за счет энергии, передаваемой от второй теплообменной поверхности испарителя жидкого криопродукта 8 при конденсации хладагента. Газифицированный криопродукт по газопроводу 9 поступает в трехходовой клапан 10, в котором разделяется на два потока: одна часть газообразного криопродукта подается для наддува резервуаров хранилища жидкого кислорода 1, а вторая возвращается в дополнительный баллон с криогенной заправкой 5, откуда газообразный криопродукт также может использоваться для наддува резервуаров хранилища жидкого кислорода 1. В качестве хладагента могут применяться такие вещества как метан, этан, криптон, аргон, неон и другие. Из второй теплообменной поверхности испарителя жидкого криопродукта 8 хладагент поступает в насос хладагента 12, где он сжимается, нагреваясь при этом, и поступает в испаритель хладагента 13, в котором полностью газифицируется за счет подвода теплоты от атмосферного воздуха, подаваемого в корпус испарителя вентилятором атмосферного воздуха 16. Газообразный хладагент поступает в турбину 14, где происходит его расширение с выработкой механической энергии, которая преобразуется в электрическую энергию с помощью электрогенератора 15.

Таким образом, применение такого устройства позволяет получить при заправке ракеты жидким кислородом дополнительную электрическую энергию, вырабатываемую электрогенератором при расширении в турбине газообразного хладагента, испарившегося за счет тепла атмосферного воздуха. Полученную электрическую энергию можно использовать для электроснабжения насосов системы заправки ракеты, а также других электрических потребителей.

Похожие патенты RU2767405C2

название год авторы номер документа
Резервуар для криогенной жидкости 1990
  • Ремизов Алексей Николаевич
  • Шванке Дмитрий Викторович
SU1758329A1
КРИОГЕННАЯ УСТАНОВКА-ГАЗИФИКАТОР И СПОСОБ ЕЕ РАБОТЫ 2019
  • Агашкин Сергей Викторович
  • Лавриненко Александр Иванович
  • Максимов Дмитрий Юрьевич
  • Волкова Любовь Борисовна
  • Федоров Сергей Николаевич
RU2727261C1
СИСТЕМА ЗАПРАВКИ ПЕРЕОХЛАЖДЕННЫМ КИСЛОРОДОМ БАКА ОКИСЛИТЕЛЯ РАЗГОННОГО БЛОКА 2003
  • Денисов А.В.
  • Егоров А.М.
  • Кудрявцева Л.Э.
  • Лукьянова Э.А.
  • Сулягин Е.В.
  • Сыровец М.Н.
  • Тупицын Н.Н.
  • Федоров В.И.
  • Хаспеков В.Г.
  • Зашляпин Р.А.
  • Петров С.К.
  • Андрюшкин С.М.
RU2241645C2
СПОСОБ ХОЛОДНОЙ РЕГАЗИФИКАЦИИ КРИОГЕННОЙ ЖИДКОСТИ БЕСПЕРЕБОЙНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Бородай Владимир Эрнестович
  • Коробков Алексей Александрович
  • Кулик Максим Васильевич
  • Мёдов Николай Николаевич
  • Редькин Виктор Васильевич
  • Смородин Анатолий Иванович
RU2615302C1
Система охлаждения ракетного топлива на стартовом комплексе 2021
  • Угланов Дмитрий Александрович
  • Шиманова Александра Борисовна
  • Довгялло Александр Иванович
  • Шиманов Артем Андреевич
  • Сармин Дмитрий Викторович
RU2772307C1
КРИОГЕННАЯ ЗАПРАВОЧНАЯ СИСТЕМА КОСМИЧЕСКОГО ОБЪЕКТА 2008
  • Толяренко Андрей Владимирович
  • Лихачев Михаил Владимирович
  • Зашляпин Рудольф Александрович
  • Черемных Олег Яковлевич
  • Новоселов Валерий Федорович
  • Синицын Евгений Яковлевич
RU2386890C2
Система криообеспечения 2016
  • Фирсов Валерий Петрович
  • Ковалев Константин Львович
  • Антюхов Илья Владимирович
  • Верещагин Максим Михайлович
  • Равикович Юрий Александрович
  • Холобцев Дмитрий Петрович
  • Ермилов Юрий Иванович
  • Балабошко Николай Георгиевич
  • Тимушев Сергей Федорович
RU2616147C1
СИСТЕМА ЗАПРАВКИ ПЕРЕОХЛАЖДЕННЫМ КИСЛОРОДОМ БАКА ОКИСЛИТЕЛЯ РАЗГОННОГО БЛОКА 2005
  • Лукьянова Эльвира Александровна
  • Сукачева Ольга Вячеславовна
  • Сыровец Михаил Николаевич
  • Федоров Валентин Иванович
RU2297373C2
СТАРТОВЫЙ КОМПЛЕКС ДЛЯ ПОДГОТОВКИ И ПУСКА РАКЕТ-НОСИТЕЛЕЙ С КОСМИЧЕСКИМИ АППАРАТАМИ 2004
  • Бармин Игорь Владимирович
  • Климов Владимир Николаевич
  • Рахманов Жан Рахманович
  • Сборец Виктор Павлович
  • Игнашин Андрей Михайлович
RU2270792C1
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ ЗАКРЫТОГО ЦИКЛА С ДОЖИГАНИЕМ ОКИСЛИТЕЛЬНОГО И ВОССТАНОВИТЕЛЬНОГО ГЕНЕРАТОРНЫХ ГАЗОВ БЕЗ ПОЛНОЙ ГАЗИФИКАЦИИ И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2022
  • Губанов Давид Анатольевич
  • Востров Никита Владимирович
RU2801019C1

Иллюстрации к изобретению RU 2 767 405 C2

Реферат патента 2022 года Система заправки ракеты жидким кислородом

Изобретение относится, главным образом, к стационарному заправочному оборудованию авиационно-космической техники. Жидкий кислород из резервуаров хранилища с помощью центробежных насосов и системы наддува по трубопроводу подается в систему заправки ракеты. Система наддува содержит баллон с (жидким) криопродуктом, подаваемым в его испаритель-теплообменник, включающий в себя поверхность конденсации хладагента. Контур хладагента содержит также насос, испаритель с вентилятором атмосферного воздуха и турбину электрогенератора, выход которой сообщен с указанной поверхностью конденсации. Выход испарителя-теплообменника криопродукта сообщен через трехходовой клапан с трубопроводом наддува резервуаров с жидким кислородом и с газовой полостью баллона системы наддува. Техническим результатом является выработка дополнительной электроэнергии за счет использования тепла атмосферного воздуха, которую можно использовать для электроснабжения насосов системы заправки и других потребителей. 1 ил.

Формула изобретения RU 2 767 405 C2

Система заправки ракеты жидким кислородом, содержащая резервуары хранилища жидкого кислорода, центробежные кислородные насосы, криогенные и не криогенные изолированные трубопроводы, кольцевой коллектор для распределения жидкого кислорода по блокам ракеты, оборудование дренажной площадки с дренажными трубопроводами, резервуаром для приема жидкого кислорода и газа, подаваемого из кольцевого коллектора, средства пневмоуправления, средства измерения и контроля параметров жидкого кислорода, отличающаяся тем, что система заправки ракеты жидким кислородом снабжена системой наддува, состоящей из трубопровода наддува, дополнительного баллона с криогенной заправкой криопродуктом, насоса криопродукта, трубопровода жидкого криопродукта, испарителем жидкого криопродукта, газопроводом с трехходовым клапаном, трубопроводом хладагента, насосом хладагента, испарителем хладагента, вентилятором атмосферного воздуха, турбиной с электрогенератором, при этом в корпусе испарителя жидкого криопродукта размещены две теплообменные поверхности, вход первой из которых связан с насосом жидкого криопродукта, а ее выход связан с трехходовым клапаном, вход второй теплообменной поверхности испарителя жидкого криопродукта связан с выходом турбины, а ее выход связан с насосом хладагента, испаритель хладагента имеет одну теплообменную поверхность, причем вход этой поверхности связан по хладагенту с насосом хладагента, а ее выход связан с входом турбины, вход вентилятора атмосферного воздуха связан с атмосферой, а его выход - с корпусом испарителя хладагента.

Документы, цитированные в отчете о поиске Патент 2022 года RU2767405C2

Архаров A.M., Кунис И.Д
Криогенные заправочные системы стартовых ракетно-космических комплексов
- М
Изд
МГТУ им
Н.Э
Баумана, 2006, с
Способ получения молочной кислоты 1922
  • Шапошников В.Н.
SU60A1
СПОСОБ ПОЛУЧЕНИЯ КОСМЕТИЧЕСКОЙ МАСКИ 2009
  • Балдынова Феодосия Прокопьевна
  • Бабыкина Ирина Александровна
RU2412692C1
Способ изготовления молибденового электрода термоэмиссионного преобразователя 1987
  • Геращенко С.С.
  • Гусева М.И.
  • Никольский Ю.В.
  • Степанчиков В.А.
SU1468311A1
В.Н
Криштал, А.Б
Ленский
Криогенные заправочные системы многоразового космического комплекса "Энергия-Буран"
Технические газы, N 6, 2008,

RU 2 767 405 C2

Авторы

Угланов Дмитрий Александрович

Довгялло Александр Иванович

Шиманова Александра Борисовна

Шиманов Артём Андреевич

Сармин Дмитрий Викторович

Даты

2022-03-17Публикация

2020-07-30Подача