СПОСОБ КОНТРОЛЯ ДЕФЕКТА ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ ОБРАЗЦА ПРИ ИСПЫТАНИЯХ НА ТЕРМОЦИКЛИЧЕСКУЮ СТОЙКОСТЬ Российский патент 2022 года по МПК G01N25/72 G01M13/00 

Описание патента на изобретение RU2767888C1

Изобретение относится к области машиностроения и может быть использовано при контроле дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость на испытательном стенде.

Известен способ контроля дефекта теплозащитного покрытия при испытаниях на термоциклическую стойкость на испытательном стенде, наиболее близкий к предлагаемому изобретению, и выбранный за прототип является стандарт (ISO 13123, опубл. 15.12.2011), характеризующийся тем, что образец устанавливают в приспособлении, проводят термоциклические испытания путем циклического нагрева-охлаждения образца с использованием нагревающего элемента. При проведении испытаний для оценки и контроля дефекта покрытия используется визуальный контроль или показания датчика измерения акустической эмиссии.

Недостатком данного способа контроля является невысокая точность применяемого метода оценки дефекта покрытия, отсутствие автоматизации измерений, отсутствие возможности оценки динамики деградации покрытия в ходе испытаний.

Технической проблемой при осуществлении прототипа является низкая точность способа контроля, а также сложность реализации способа измерения акустической эмиссии при термоциклических испытаниях.

Технической задачей заявленного изобретения является повышение точности определения дефектов покрытия образца и автоматизация испытаний на термоциклическую стойкость на испытательном стенде.

Техническая проблема решается за счет того, что в способе контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость, заключающемся в том, что образец устанавливают в приспособление, проводят термоциклические испытания с использованием нагревающего элемента при температурах 20-1500°С, включающие нагрев теплозащитного покрытия до температуры Tmax, выдержку при температуре Tmax, охлаждение теплозащитного покрытия до температуры Tmin, выдержку при температуре Tmin, согласно изобретению, дополнительно используют электронно-вычислительную машину (далее ЭВМ), а также устройство машинного зрения, которым осуществляют фотосъемку образца в начале каждого цикла и после выдержки при максимальной температуре, выгружают изображения в ЭВМ, при помощи которой в автоматическом режиме сравнивают изображения образца с образцами, хранящимися в базе данных ЭВМ, по ранее проведенным испытаниям, выявляют дефекты теплозащитного покрытия образца (скол, отслоение, шелушение, вспучивание и др.), выводят на панель оператора значение дефекта покрытия, выполняют автоматический останов испытаний для образца с дефектами, суммарно превышающими допустимое значение А, при этом допустимое значение А равно 20-30% от площади поверхности образца Soбp.

В предлагаемом изобретении, в отличии от прототипа, применение ЭВМ при контроле состояния теплозащитного покрытия позволяет автоматизировать процесс испытаний, а применение устройства машинного зрения позволят повысить точность измерений и определения дефектов, за счет обработки изображений покрытия образца и сравнения их с базой данных ЭВМ на каждом цикле испытаний образца.

Процесс фотофиксации, а также передачи изображений, может осуществляться с использованием автономного контроллера или непосредственно контроллера стенда. Обработка изображений выполняется специализированным программным обеспечением, установленным на ЭВМ.

База данных может пополняться новыми снимками образцов. Таким образом, обеспечивается обучение системы, повышается точность определения дефекта покрытия.

Допустимое значение дефекта покрытия А, при котором осуществляется останов испытаний, может составлять, например, 20…30% от площади поверхности образца Soбp.

На фиг. 1 - представлен стенд термоциклических испытаний образцов с теплозащитным покрытием.

На фиг. 2 - представлен испытательный цикл для образца.

Способ контроля дефекта теплозащитного покрытия при испытаниях на термоциклическую стойкость реализуется следующим образом (фиг. 1):

Образец с теплозащитным покрытием 1 устанавливают в приспособление 2. Для нагрева образца 1 с фронтальной стороны используют нагревающий элемент 3, например, горелка, плазматрон, лазерный луч и др. Для охлаждения образца 1 с тыльной стороны используют сопло с воздухом 4. Сбор информации и контроль за процессом испытаний осуществляют в ЭВМ 5, включающей в себя персональный компьютер, монитор, контроллер, и установленной в испытательном стенде (без позиции). Цикличность испытаний обеспечивается перемещением нагревающего элемента из зоны нагрева в домашнее положение и обратно перемещающим элементом 6 (траверса, пневмопатрон и др.). Цикл испытаний (фиг. 2) условно разделяется на четыре этапа: а) нагрев теплозащитного покрытия до температуры Tmax, например, 1500°С; б) выдержка от 0 до 60 мин при температуре Tmax; в) охлаждение теплозащитного покрытия до температуры Tmin, например, 20°С; г) выдержка от 0 до 60 мин при температуре Tmin. В начале каждого цикла и после выдержки при максимальной температуре осуществляют фотосьемку образца с использованием устройства машинного зрения, например, камеры 7. Получают два изображения образца с теплозащитным покрытием за один цикл. Передают изображения в ЭВМ 5, в ЭВМ 5 автоматически сравнивают изображения образца с образцами, хранящимися в базе данных ЭВМ по ранее проведенным испытаниям, выявляют дефекты покрытия образца, возникающие в процессе испытаний, выводят на панель оператора значение дефекта покрытия, выполняют автоматический останов испытаний для образца с дефектами, суммарно превышающими допустимое значение А, при этом допустимое значение А равно 20-30% от площади поверхности образца Soбp.

По заявляемому техническому решению успешно проведены экспериментальные работы, и в настоящее время данный способ контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость реализован на испытательном стенде предприятия.

Таким образом, выполнение предлагаемого изобретения с вышеуказанными отличительными признаками, в совокупности с известными признаками, позволяет автоматизировать испытания образцов с покрытиями на термоциклическую стойкость, а также повысить достоверность и точность операции контроля состояния теплозащитного покрытия при испытаниях.

Похожие патенты RU2767888C1

название год авторы номер документа
Способ испытания теплозащитных покрытий 2022
  • Першин Алексей Викторович
  • Хамидуллин Артем Шамилевич
  • Авруцкий Владимир Валерьевич
RU2791435C1
Способ определения напряжений в материале при испытаниях на термическую усталость 2020
  • Дегтярева Софья Павловна
  • Прохорова Татьяна Владимировна
RU2750424C1
Способ исследования термической усталости посредством испытаний на образцах корсетной формы 2024
  • Дегтярева Софья Павловна
  • Прохорова Татьяна Владимировна
  • Пескишев Сергей Александрович
  • Сафронов Дмитрий Алексеевич
RU2824332C1
СПОСОБ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ 1995
  • Шибаев Ю.А.
  • Левшин Э.А.
  • Дампилон В.Г.
  • Дураков В.Г.
RU2094484C1
СПОСОБ ИСПЫТАНИЯ ДЕТАЛЕЙ С ТЕПЛОЗАЩИТНЫМ ПОКРЫТИЕМ НА ДОЛГОВЕЧНОСТЬ 2004
  • Лепешкин А.Р.
  • Бычков Н.Г.
  • Першин А.В.
RU2259548C1
Способ определения средней скорости движения транспортного средства 2017
  • Устименко Виктор Семенович
  • Дёмик Вадим Валерьевич
  • Еремина Нина Александровна
RU2662592C1
Способ нанесения теплозащитного покрытия с двойным керамическим теплобарьерным слоем 2022
  • Доронин Олег Николаевич
  • Каблов Евгений Николаевич
  • Артеменко Никита Игоревич
  • Будиновский Сергей Александрович
  • Акопян Ашот Грачикович
  • Бенклян Артем Сергеевич
  • Самохвалов Николай Юрьевич
  • Серебряков Алексей Евгеньевич
RU2791046C1
Акустико-эмиссионный способ контроля изменения устойчивости обработанного твердеющими веществами грунтового массива 2021
  • Новиков Евгений Александрович
  • Клементьев Евгений Андреевич
RU2775159C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2021
  • Панков Владимир Петрович
  • Румянцев Сергей Васильевич
  • Панков Денис Владимирович
  • Баженов Анатолий Вячеславович
  • Головасичева Таисия Витальевна
  • Степанова Виктория Владимировна
  • Обухова Софья Евгеньевна
  • Степанова Марина Валерьевна
  • Пустовит Даниил Олегович
RU2766627C1
МАТЕРИАЛ КЕРАМИЧЕСКОГО СЛОЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ 2013
  • Мубояджян Сергей Артемович
  • Каблов Евгений Николаевич
  • Будиновский Сергей Александрович
  • Чубаров Денис Александрович
RU2556248C1

Иллюстрации к изобретению RU 2 767 888 C1

Реферат патента 2022 года СПОСОБ КОНТРОЛЯ ДЕФЕКТА ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ ОБРАЗЦА ПРИ ИСПЫТАНИЯХ НА ТЕРМОЦИКЛИЧЕСКУЮ СТОЙКОСТЬ

Изобретение относится к области машиностроения. Раскрыт способ контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость, заключающийся в том, что образец устанавливают в приспособление и проводят термоциклические испытания, с использованием нагревающего элемента при температуре 20-1500°С. При этом дополнительно используют электронно-вычислительную машину, а также устройство машинного зрения, которым осуществляют фотосъемку образца в начале каждого цикла и после выдержки при максимальной температуре, выгружают изображения в электронно-вычислительную машину, при помощи которой в автоматическом режиме сравнивают фотографии образца с образцами, хранящимися в базе данных электронно-вычислительной машины, по ранее проведенным испытаниям, выявляют дефекты теплозащитного покрытия образца, выводят на панель оператора значение дефекта покрытия, выполняют автоматический останов испытаний для образца с дефектами, суммарно превышающими допустимое значение А, при этом допустимое значение А равно 20-30% от площади поверхности образца Sобр. Изобретение позволяет автоматизировать испытания образцов с покрытиями на термоциклическую стойкость, а также повысить достоверность и точность операции контроля состояния теплозащитного покрытия при испытаниях. 2 ил.

Формула изобретения RU 2 767 888 C1

Способ контроля дефекта теплозащитного покрытия образца при испытаниях на термоциклическую стойкость, заключающийся в том, что образец устанавливают в приспособление, проводят термоциклические испытания, включающие нагрев теплозащитного покрытия до температуры Tmax, выдержку при температуре Tmax, охлаждение теплозащитного покрытия до температуры Tmin, выдержку при температуре Tmin, с использованием нагревающего элемента при температуре 20-1500°С, отличающийся тем, что дополнительно используют электронно-вычислительную машину, а также устройство машинного зрения, которым осуществляют фотосъемку образца в начале каждого цикла и после выдержки при максимальной температуре, выгружают изображения в электронно-вычислительную машину, при помощи которой в автоматическом режиме сравнивают фотографии образца с образцами, хранящимися в базе данных электронно-вычислительной машины, по ранее проведенным испытаниям, выявляют дефекты теплозащитного покрытия образца, выводят на панель оператора значение дефекта покрытия, выполняют автоматический останов испытаний для образца с дефектами, суммарно превышающими допустимое значение А, при этом допустимое значение А равно 20-30% от площади поверхности образца Sобр.

Документы, цитированные в отчете о поиске Патент 2022 года RU2767888C1

СПОСОБ ИСПЫТАНИЯ ДЕТАЛЕЙ С ТЕПЛОЗАЩИТНЫМ ПОКРЫТИЕМ НА ДОЛГОВЕЧНОСТЬ 2004
  • Лепешкин А.Р.
  • Бычков Н.Г.
  • Першин А.В.
RU2259548C1
US 5227600, 13.07.1993
US 20150355074 A1, 10.12.2005
JP 2016020875 A, 04.02.2016
JP 2017096834 A, 01.06.2017.

RU 2 767 888 C1

Авторы

Самохвалов Николай Юрьевич

Даты

2022-03-22Публикация

2021-05-14Подача