СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ ЖЕЛЕЗО-НИКЕЛЬ-ХРОМ НА ИЗНОШЕННЫЕ ПОВЕРХНОСТИ ДЕТАЛЕЙ С ПОМОЩЬЮ РЕВЕРСИВНОГО ТОКА Российский патент 2022 года по МПК C25D3/56 C25D5/18 

Описание патента на изобретение RU2775586C1

Изобретение относится к нанесению гальванических покрытий на основе железа и может быть использовано при выполнении ремонтных работ. Способ включает подготовку поверхностей деталей к железнению и последующее нанесение покрытия Fe-Ni-Cr из электролита на основе сульфата железа, железнение ведут путем подачи на электроды переменного асимметричного тока частотой 0,5 кГц и плотностью тока 5-25 А/дм2, с коэффициентом асимметрии (β) в интервале от 2 до 5-6, при этом вначале устанавливают минимальную величину катодно-анодного отношения, а затем плавно увеличивают до максимального значения и осаждение покрытия продолжают до получения заданной толщины покрытия. Технический результат: повышение микротвердости, скорости осаждения электролического покрытия, равномерности, снижение энергозатрат.

Известны способы электролического железнения из хлористых и сульфатных электролитов, содержащих хлориды железа и никеля, когда процесс в начальной стадии проводят следующим образом: выдержки без тока в электролите и далее электролиз на асимметричном переменном токе [1, 2]. Недостатками этих способов являются плохое сцепление покрытий с основой, невысокие скорости осаждения, низкий выход по току.

Наиболее близким по технической сущности и достигаемому результату к заявленному способу является способ нанесения железных покрытий из электролитов на основе хлористого железа с добавками йодистого калия, серной и соляной кислоты при температуре электролиза 18-20°С и плотности тока 5-40 А/дм2 по ступенчатому режиму подачи тока [2].

Недостатками этих способов являются плохое сцепление покрытий с основой, невысокие скорости осаждения, низкий выход по току, высокие энергетические затраты.

Целью изобретения является устранение указанных недостатков. Техническим результатом предложенного способа является хорошее сцепление покрытий с основой, повышение скорости осаждения и микротвердости покрытия Fe-Ni-Cr, снижение энергетических затрат.

Способ электроосаждения покрытия сплава железо-никель-хром на изношенную поверхность деталь включает подготовку изношенной поверхности детали и последующее электроосаждение покрытия сплава железо-никель-хром из электролита на основе сульфата железа, при этом электроосаждение покрытия сплава железо-никель-хром ведут из электролита, содержащего, г/л: H2SO4 350-400, FeSO4⋅7H2O 150-350, NiSO4 35-75, Cr2(SO4)3 30-70, NaBr 3-5 г/л, аскорбиновую кислоту С6Н8О6 3-7, кристаллический фиолетовый 1-2, при температуре электролита 18-20°С и времени осаждения от 1 часа и более до получения заданной толщины покрытия, при этом на электроды подают переменный асимметричный ток частотой 0,5 кГц и плотностью 5-25 А/дм2 с коэффициентом асимметрии в интервале от 1,2 до 5-6, причем вначале устанавливают минимальную величину упомянутого показателя катодно-анодного отношения от 1,2, а затем его плавно увеличивают до значения 5-6 при величине минимальной выдержки катодно-анодного показателя 0,5-1 минута.

Способ нанесения покрытий железо-никель-хром включает очищение изношенных деталей от грязи и смазки в растворах обезжиривания, восстановление геометрических размеров путем шлифования до 0,5% от диаметра изношенной детали, которые монтируются на подвесные приспособления, а участки, не подлежащие покрытию, изолируются парафинно-канифольной мастикой, затем проводится электрохимическое обезжиривание и пассивирование деталей в 30% серной кислоте, после чего детали промываются в горячей, затем холодной воде и подаются на стадию железнения, при плавном увеличении катодно-анодного показателя регулируется величина микротвердости по толщине, содержание хрома и никеля, сцепляемость покрытия с деталью, что позволяет рекомендовать гальванические покрытия Fe-Ni-Cr для восстановления изношенных деталей сельскохозяйственной техники.

Сущность настоящего изобретения заключается в том, что после подготовки изношенных поверхностей деталей к железнению, последующее железнение ведут из электролита: серная кислота (H2SO4) - 350-400 г/л, сернокислое железо (FeSO4⋅7H2O) - 150-350 г/л, никель сернокислый (NiSO4) - 35-75 г/л, хром сернокислый Cr2(SO4)3 - 30-70 г/л, NaBr - 3-5 г/л, аскорбиновая кислота (С6Н8О6) - 3-7 г/л в присутствии кристаллического фиолетового (1-2 г/л). Согласно изобретению железнение (электроосаждение покрытия сплава железо-никель-хром) ведут путем подачи на электроды переменного асимметричного тока частотой 0,5 кГц и плотностью 5-25 А/дм2, при этом вначале устанавливают минимальную величину катодно-анодного отношения от 1,2, а затем плавно увеличивают его до значения 5-6, и осаждение сплава железо-никель-хром ведут до получения заданной толщины покрытия. Величина минимальной выдержки катодно-анодного показателя составляет 0,5-1 мин.

Осаждение ведут из электролита следующего состава: серная кислота (H2SO4) - 350-400 г/л, сернокислое железо (FeSO4⋅7H2O) - 150-350 г/л, никель сернокислый (NiSO4) - 35-75 г/л, хром сернокислый Cr2(SO4)3 - 30-70 г/л, NaBr - 3-5 г/л, аскорбиновая кислота (С6Н8О6) - 3-7 г/л в присутствии кристаллического фиолетового (1-2 г/л), при температуре электролита 18-20°С, времени осаждения от 1 часа и более, что позволяет повысить скорость осаждения до 0,35 мм/час, увеличить микротвердость в зависимости от содержания хрома от 1250 МПа до 1550 МПа, при содержании хрома в покрытии соответственно 8,5 и 12 весовых процента, снизить энергозатраты. Покрытия, полученные в присутствии кристаллического фиолетового на высокочастотном переменном токе, имеют высокие антикоррозионные показатели, что обусловлено наличием наноструктур.

Электрохимические покрытия Fe-Ni-Cr обладают более высокой износостойкостью, твердостью поверхности в сравнении с покрытиями Fe-Ni и могут применяться для восстановления рабочих органов почвообрабатывающих машин, самотечных зернопроводов. Структура покрытия равномерная сплошная, мелкозернистая, слоисто-блочная с размерами мозаики кластеров кристаллитов порядка 300-400 нм с возможными включениями ε-Fe 10-20 нм, что придает покрытиям высокую износостойкость и твердость и позволяет использовать в практике ремонтного производства. Скорость электроосаждения покрытия Fe-Ni-Cr составляет 0,25-0,35 мм/ч. Содержание Ni и Cr зависит от частоты, величины β и плотности тока катодного импульса при преимущественном содержании железа (приблизительно 75% железа, остальное Ni+Cr). Причиной образования слоистой структуры Fe-Ni-Cr является периодическая кристаллизация Fe(OH)3 и Cr(ОН)3 из-за защелачивания прикатодного пространства. Износостойкость Fe-Ni-Cr покрытий в 1,68-1,89 раз выше износостойкости железных покрытий в паре с чугуном СЧ18 и бронзы Брс30 при трении без смазки по результатам сравнительных испытаний. Предложены новые способы электроосаждения покрытий Fe-Ni-Cr с применением асимметричного переменного тока.

Источники информации

1. А.С. SU 168569, кл. 48а, 1965.

2. А.С. SU 204083, кл.C25D 3/20, 1967 (прототип).

Похожие патенты RU2775586C1

название год авторы номер документа
СПОСОБ ОСАЖДЕНИЯ ПОКРЫТИЙ Fe-Ni-P 2021
  • Мамонтова Юлия Евгеньевна
  • Стекольников Юрий Александрович
RU2775554C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ ИЗ ЖЕЛЕЗА И ЕГО СПЛАВОВ 1992
  • Образцов С.В.
  • Гусельникова О.В.
RU2046155C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ФОСФОР 1999
  • Серебровский В.И.
  • Серебровская Л.Н.
  • Серебровский В.В.
  • Коняев Н.В.
  • Батищев А.Н.
RU2164560C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ ИЗНОШЕННЫХ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ХОЛОДНЫМ ТВЕРДЫМ ЖЕЛЕЗНЕНИЕМ 1999
  • Ляшенко А.Ф.
  • Басарыгин Ю.М.
  • Ломако П.М.
  • Рудик И.М.
  • Лобачева Н.С.
RU2147629C1
Способ получения коррозионностойкого электрохимического покрытия цинк-никель-кобальт 2019
  • Почкина Светлана Юрьевна
  • Соловьева Нина Дмитриевна
  • Ченцова Елена Владимировна
RU2720269C1
ЭЛЕКТРОЛИТ ДЛЯ ПОЛУЧЕНИЯ НИКЕЛЬ-ЖЕЛЕЗНЫХ ПОКРЫТИЙ 2010
  • Юдина Татьяна Федоровна
  • Торопов Илья Владимирович
  • Калинин Александр Владимирович
  • Шеханов Руслан Феликсович
RU2424380C1
ЭЛЕКТРОЛИТ ДЛЯ ПОЛУЧЕНИЯ СПЛАВОВ ЖЕЛЕЗО-НИКЕЛЬ 2018
  • Воржев Владимир Фёдорович
  • Астанин Владимир Константинович
  • Стекольников Юрий Александрович
  • Стекольникова Наталья Юрьевна
  • Емцев Виталий Валерьевич
  • Санников Эдуард Михайлович
RU2694398C1
Способ гальванического железнения стальных деталей 2018
  • Воржев Владимир Фёдорович
  • Астанин Владимир Константинович
  • Стекольников Юрий Алексеевич
  • Стекольникова Наталья Юрьевна
  • Емцев Виталий Валерьевич
  • Санников Эдуард Михайлович
RU2689341C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО - МОЛИБДЕН 2000
  • Серебровский В.И.
  • Серебровская Л.Н.
  • Серебровский В.В.
  • Коняев Н.В.
  • Батищев А.Н.
RU2174163C1
ЭЛЕКТРОЛИТ ДЛЯ ОСАЖДЕНИЯ ПОКРЫТИЙ ИЗ СПЛАВА НИКЕЛЬ-ЖЕЛЕЗО 2002
  • Милушкин А.С.
RU2237756C2

Реферат патента 2022 года СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ ЖЕЛЕЗО-НИКЕЛЬ-ХРОМ НА ИЗНОШЕННЫЕ ПОВЕРХНОСТИ ДЕТАЛЕЙ С ПОМОЩЬЮ РЕВЕРСИВНОГО ТОКА

Изобретение относится к нанесению гальванических покрытий на основе железа и может быть использовано при выполнении ремонтных дорог. Способ электроосаждения покрытия сплава железо-никель-хром на изношенную поверхность детали включает подготовку изношенной поверхности детали и последующее электроосаждение покрытия сплава железо-никель-хром из электролита на основе сульфата железа. Электроосаждение ведут из электролита, содержащего, г/л: H2SO4 350-400, FeSO4⋅7H2O 150-350, NiSO4 35-75, Cr2(SO4)3 30-70, NaBr 3-5 г/л, аскорбиновую кислоту С6Н8О6 3-7, кристаллический фиолетовый 1-2, при температуре электролита 18-20°С и времени осаждения от 1 часа и более до получения заданной толщины покрытия. На электроды подают переменный асимметричный ток частотой 0,5 кГц и плотностью 5-25 А/дм2 с коэффициентом асимметрии в интервале от 1,2 до 5-6, причем вначале устанавливают минимальную величину упомянутого показателя катодно-анодного отношения от 1,2, а затем его плавно увеличивают до значения 5-6 при величине минимальной выдержки катодно-анодного показателя 0,5-1 мин. Обеспечивается хорошее сцепление покрытий с основой, повышение скорости осаждения и микротвердости покрытия железо-никель-хром, снижение энергетических затрат.

Формула изобретения RU 2 775 586 C1

Способ электроосаждения покрытия сплава железо-никель-хром на изношенную поверхность детали, включающий подготовку изношенной поверхности детали и последующее электроосаждение покрытия сплава железо-никель-хром из электролита на основе сульфата железа, отличающийся тем, что электроосаждение покрытия сплава железо-никель-хром ведут из электролита, содержащего, г/л: H2SO4 350-400, FeSO4⋅7H2O 150-350, NiSO4 35-75, Cr2(SO4)3 30-70, NaBr 3-5 г/л, аскорбиновая кислота С6Н8О6 3-7, кристаллический фиолетовый 1-2, при температуре электролита 18-20°С и времени осаждения от 1 часа и более до получения заданной толщины покрытия, при этом на электроды подают переменный асимметричный ток частотой 0,5 кГц и плотностью 5-25 А/дм2 с коэффициентом асимметрии в интервале от 1,2 до 5-6, причем вначале устанавливают минимальную величину упомянутого показателя катодно-анодного отношения от 1,2, а затем его плавно увеличивают до значения 5-6 при величине минимальной выдержки катодно-анодного показателя 0,5-1 мин.

Документы, цитированные в отчете о поиске Патент 2022 года RU2775586C1

EP 3372710 A1, 12.09.2018
СПОСОБ ЗАКРЕПЛЕНИЯ ЛОПАТОК ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Полетаев В.А.
  • Гущин Ю.Н.
RU2261782C1
ЭЛЕКТРОЛИТ ДЛЯ ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ХРОМ 2004
  • Поветкин В.В.
  • Ковенский И.М.
  • Корешкова Е.В.
  • Денисов П.Ю.
RU2248415C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ХРОМ 2005
  • Серебровский Владимир Исаевич
  • Коняев Николай Васильевич
  • Колмыков Денис Валерьевич
RU2285065C1
ЭЛЕКТРОЛИТ ДЛЯ ПОЛУЧЕНИЯ НИКЕЛЬ-ЖЕЛЕЗНЫХ ПОКРЫТИЙ 2010
  • Юдина Татьяна Федоровна
  • Торопов Илья Владимирович
  • Калинин Александр Владимирович
  • Шеханов Руслан Феликсович
RU2424380C1
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗНЫХ ПОКРЫТИЙ 0
  • Изо Бретени
  • А. А. Эпштейн
SU204083A1

RU 2 775 586 C1

Авторы

Мамонтова Юлия Евгеньевна

Стекольников Юрий Александрович

Даты

2022-07-05Публикация

2021-04-13Подача