Изобретение относится к контрольно-измерительной технике и может быть использовано при контроле давления воды и других текучих сред.
Известен способ определения давления центробежного насоса с асинхронным электроприводом (патент SU 1783869 от 29.11.1990), Измеряют давление на подающем трубопроводе, мгновенные величины токов и напряжений статора асинхронного двигателя, преобразуют трехфазные значения токов и напряжений в двухфазные составляющие токов и напряжений, определяют модуль вектора напряжения статора, определяют модуль вектора тока статора. Давление на всасывающем трубопроводе, мгновенные двухфазные величины токов и напряжений статора асинхронного электродвигателя, модуль вектора напряжения статора, модуль вектора тока статора подают на вход искусственной нейронной сети, с помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления сети и входного давления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными определяют промежуточные значения по формуле давления жидкости, фильтруют данные, тем самым определяя мгновенную величину давления жидкости центробежного насоса с асинхронным электроприводом.
Наиболее близким к заявляемому является способ определения давления центробежного насоса с асинхронным электроприводом (патент RU 2623195 от 22.06.2017), при реализации которого измеряют давление на подающем трубопроводе, измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, преобразуют трехфазные значения токов и напряжений в двухфазные составляющие токов и напряжений, определяют оцененные составляющие тока статора. Затем вычисляют разницу между оцененными значениями составляющих тока статора и текущими значениями составляющих тока статора, определяют оцененные значения составляющих потокосцеплений ротора. По оцененным значениям составляющих тока статора и потокосцепления ротора определяют электромагнитный момент асинхронного двигателя. С помощью оцененных значений составляющих потокосцепления ротора и разницы между оцененными значениями составляющих тока статора и текущими значениями составляющих тока статора определяют момент нагрузки центробежного насоса. С помощью значений электромагнитного момента асинхронного двигателя и момента нагрузки центробежного насоса определяют текущую угловую скорость вращения рабочего колеса центробежного насоса. Определяют гидравлическую мощность насоса. По значениям гидравлической мощности и скорости вращения ротора определяют действительный расход насосной установки. По значениям действительного расхода насосной установки и давлению на подающем трубопроводе определяют развиваемое насосной установкой давление.
Недостатками известных способов является точность определения давления в установившихся и переходных процессах, в условиях шума сигналов тока и напряжения асинхронного двигателя.
Задачей изобретения является повышение точности определения мгновенного давления жидкости центробежного насоса с асинхронным электроприводом в условиях шумов входных сигналов.
Сущность технического решения поясняется формулами (1-10).
Техническим результатом изобретения является повышение точности определения давления жидкости насосной установки с центробежными насосами и асинхронными двигателями.
Технический результат достигается тем, что измеряют мгновенные величины токов (
Для определения переменных состояния асинхронного двигателя используют Фильтр Калмана (Бреммер К., Зиферлинг Г. Фильтр Калмана–Бьюси. – М.: Наука, 1982. – 199 с.). Входными воздействиями для фильтра Калмана на i-м шаге являются:
Выходными значениями фильтра Калмана является вектор
Где
Определяют
где
Коэффициенты матрицы
где
Определяют матричный коэффициент усиления фильтра Калмана на i-м шаге (4):
Определяют вектор выходных величин
Определяют угловую скорость вращения ротора двигателя
Определяют электромагнитный момент асинхронного двигателя
На интервале усреднения
где
Определяют мгновенную величину расхода жидкости центробежного насоса, по формуле (8):
где
Давление жидкости насосной установки определяется как сумма давления развиваемого насосом и давления в питающем трубопроводе (10):
где
В проведенных экспериментах на насосе К8-18 с асинхронным двигателем АД80М2 погрешность определения давления в установившемся режиме не превышает 3%.
Таким образом, заявленный способ позволяет повысить точность определения давления жидкости центробежного насоса с асинхронным электроприводом в условиях шума входных сигналов.
Сущность изобретения: для повышения точности определения давления центробежного насоса с асинхронным электроприводом в условиях шумов входных сигналов измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, преобразуют трехфазные значения токов и напряжений в двухфазные составляющие токов и напряжений. На каждом из временных отрезков составляют матрицу коэффициентов уравнений состояния асинхронного двигателя, определяют матрицу ковариаций ошибки, определяют матричный коэффициент усиления фильтра Калмана, определяют вектор выходных величин, по составляющим которого вычисляют электромагнитный момент и угловую скорость вращения ротора, развиваемые асинхронным электродвигателем. По значениям электромагнитного момента и угловой скорости вращения ротора определяют мгновенную гидравлическую мощность, развиваемую центробежным насосом. С помощью значений мгновенной гидравлической мощности и угловой скорости вращения ротора асинхронного двигателя определяют мгновенный объёмный расход центробежного насоса. По значениям действительного расхода насосной установки и давлению на подающем трубопроводе определяют развиваемое насосной установкой давление. Техническим результатом изобретения является повышение точности определения давления жидкости насосной установки с центробежными насосами и асинхронными двигателями.
Способ определения давления центробежного насоса с асинхронным электроприводом, для реализации которого проводят измерение давления на подающем трубопроводе, проводят измерение мгновенных величин токов и напряжений статора асинхронного двигателя, преобразование трехфазных значений токов и напряжений в двухфазные составляющие токов и напряжений, отличающийся тем, что на каждом из временных отрезков составляют матрицу коэффициентов уравнений состояния асинхронного двигателя, определяют матрицу ковариаций ошибки, определяют матричный коэффициент усиления фильтра Калмана, определяют вектор выходных величин, по составляющим которого вычисляют электромагнитный момент и угловую скорость вращения ротора, развиваемые асинхронным электродвигателем, по значениям электромагнитного момента и угловой скорости вращения ротора определяют мгновенную гидравлическую мощность, развиваемую центробежным насосом, с помощью значений мгновенной гидравлической мощности и угловой скорости вращения ротора асинхронного двигателя определяют мгновенный объёмный расход центробежного насоса, по значениям действительного расхода насосной установки и давлению на подающем трубопроводе определяют развиваемое насосной установкой давление.
СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ НАСОСА С ЭЛЕКТРОДВИГАТЕЛЕМ | 2016 |
|
RU2623195C1 |
US 8441222 B2, 14.05.2013 | |||
СПОСОБ УПРАВЛЕНИЯ ДОЗИРУЮЩИМ НАСОСОМ И/ИЛИ РЕГУЛИРОВАНИЯ ДОЗИРУЮЩЕГО НАСОСА | 2011 |
|
RU2558172C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ | 2012 |
|
RU2502079C1 |
Авторы
Даты
2023-03-13—Публикация
2022-07-29—Подача