Способ определения давления центробежного насоса с асинхронным электроприводом Российский патент 2023 года по МПК F04B51/00 F04D13/06 

Описание патента на изобретение RU2791970C1

Изобретение относится к контрольно-измерительной технике и может быть использовано при контроле давления воды и других текучих сред.

Известен способ определения давления центробежного насоса с асинхронным электроприводом (патент RU 2623195 от 22.06.2017), при реализации которого измеряют давление на подающем трубопроводе, измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, преобразуют трехфазные значения токов и напряжений в двухфазные составляющие токов и напряжений, определяют оцененные составляющие тока статора. Затем вычисляют разницу между оцененными значениями составляющих тока статора и текущими значениями составляющих тока статора, определяют оцененные значения составляющих потокосцеплений ротора. По оцененным значениям составляющих тока статора и потокосцепления ротора определяют электромагнитный момент асинхронного двигателя. С помощью оцененных значений составляющих потокосцепления ротора и разницы между оцененными значениями составляющих тока статора и текущими значениями составляющих тока статора определяют момент нагрузки центробежного насоса. С помощью значений электромагнитного момента асинхронного двигателя и момента нагрузки центробежного насоса определяют текущую угловую скорость вращения рабочего колеса центробежного насоса. Определяют гидравлическую мощность насоса. По значениям гидравлической мощности и скорости вращения ротора определяют действительный расход насосной установки. По значениям действительного расхода насосной установки и давлению на подающем трубопроводе определяют развиваемое насосной установкой давление.

Наиболее близким к заявленному является способ определения давления центробежного насоса с асинхронным электроприводом (патент RU 2743866 от 30.06.2020), при реализации которого проводят измерение давления на подающем трубопроводе, мгновенных величин токов и напряжений статора асинхронного двигателя, преобразование трехфазных значений токов и напряжений в двухфазные составляющие токов и напряжений, отличающийся тем, что определяют модули векторов напряжения и тока статора, подают их на вход искусственной нейронной сети, с помощью которой, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления сети и входного давления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными, определяют промежуточные значения по формуле давления жидкости, фильтруют данные, тем самым определяя мгновенную величину давления жидкости центробежного насоса с асинхронным электроприводом.

Недостатками известных способов является недостаточная точность определения давления в установившихся и переходных процессах, а также недостаточное быстродействие отклик из-за использования фильтров в виде апериодических звеньев со значительными постоянными времени.

Задачей изобретения является повышение точности определения давления насосной установки.

Отличием от известных способов является использование структуры нейронной сети c нелинейной авторегрессией с экзогенными входами с дополнительными данными, полученными путем задержки по времени входных сигналов давления на входе, токов и напряжений, а также наличие внутренней обратной связи выходного давления с задержкой по времени, что повышает точность определения давления.

Данный технический результат достигается тем, что измеряют давление на всасывающем патрубке, мгновенные трехфазные величины токов и напряжений статора асинхронного двигателя, преобразуют трехфазные величины токов и напряжений статора асинхронного двигателя в двухфазные, по формулам:

где - составляющая напряжение статора асинхронного двигателя (измеренное значение), В,

- составляющая тока статора асинхронного двигателя (измеренное значение), А.

Определяют модуль вектора напряжения статора, определяют модуль вектора тока статора по формулам:

где - модуль вектора напряжения статора,

- модуль вектора тока статора.

Определяют величины , , , , , , которые являются соответствующими значениями напряжения и тока с задержкой как минимум на 2 миллисекунды.

С помощью искусственной реккурентной нейронной сети с обратной связью, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления и давления на всасывающем трубопроводе, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными определяют промежуточные значения давления по формуле:

,

где

- промежуточные значения давления насоса

- входные сигналы искусственной нейронной сети, равные соответственно, давлению во всасывающем трубопроводе и сигналу с двойной временной задержкой , текущим значениям тока статора , и их значениям с двойной временной задержкой , , модулю тока статора , и его значению с двойной временной задержкой , напряжениям статора , , и их значениям с двойной временной задержкой , , модулю напряжения статора , и его значению с временной задержкой , а также сигналы обратной связи с двойной задержкой и четвертной задержкой .

m - количество нейронов во входном слое (m=16),

n - количество нейронов в скрытом слое (n=7).

w1ij - синаптический вес j-го входа i-го нейрона скрытого слоя,

b1i0 - сдвиг i-го нейрона скрытого слоя,

w2i - синаптический вес i-го входа нейрона выходного слоя,

b20 - сдвиг нейрона выходного слоя.

Структура нейронной сети представлена на чертеже. Для определения мгновенной величины давления жидкости центробежного насоса с асинхронным электроприводом использовали трехслойную рекуррентную искусственную нейронную сеть с обратной связью, которая состоит из входного слоя, скрытого слоя и выходного слоя. Количество нейронов во входном слое равно 16, в скрытом слое - 7, в выходном слое - 1. Функция активации всех нейронов скрытого слоя - гиперболический тангенс, выходного слоя - линейная. Нейроны входного слоя передают входные сигналы на скрытый слой, не преобразуя их.

Перед началом работы обучают искусственную нейронную сеть на выборке, сформированной по опытным данным работы электропривода центробежного насоса с частотным регулированием и дроссельным регулированием подачи насоса. Период дискретизации 1 мс. Для обучения искусственной нейронной сети использовали алгоритм Левенберга-Марквардта.

Процесс обучения искусственной нейронной сети выглядит следующим образом: все коэффициенты связей между нейронами инициализируются случайными числами, затем сети предъявляется обучающая выборка, и с помощью алгоритма обучения коэффициенты синаптических связей подстраиваются при выполнении циклической процедуры так, чтобы расхождение между обучающей выборкой и реакцией сети на соответствующие входные данные было минимальным.

В проведенных экспериментах на насосе К8-18 с асинхронным двигателем АД80М2 погрешность определения давления по сравнению с эталонной моделью в установившемся режиме не превышает 3%.

Похожие патенты RU2791970C1

название год авторы номер документа
Способ определения расхода жидкости центробежного насоса с асинхронным электроприводом 2021
  • Лысенко Олег Александрович
RU2781571C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ЦЕНТРОБЕЖНОГО НАСОСА С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ 2020
  • Лысенко Олег Александрович
RU2743866C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА ЖИДКОСТИ ЦЕНТРОБЕЖНОГО НАСОСА С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ 2020
  • Лысенко Олег Александрович
RU2741267C1
Способ определения давления центробежного насоса с асинхронным электроприводом 2022
  • Лысенко Олег Александрович
RU2791689C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОЦЕНКИ ЧАСТОТЫ ВРАЩЕНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ 2011
  • Глазырин Александр Савельевич
  • Ткачук Роман Юрьевич
  • Глазырина Татьяна Анатольевна
  • Тимошкин Вадим Владимирович
  • Афанасьев Кирилл Сергеевич
  • Гречушников Дмитрий Васильевич
  • Ланграф Сергей Владимирович
RU2476983C1
СПОСОБ ДИАГНОСТИКИ ВИТКОВЫХ ЗАМЫКАНИЙ В ОБМОТКЕ РОТОРА СИНХРОННОГО ГЕНЕРАТОРА 2016
  • Глазырин Александр Савельевич
  • Полищук Владимир Иосифович
  • Тимошкин Вадим Владимирович
RU2629708C1
Способ определения расхода жидкости центробежного насоса с асинхронным электроприводом 2022
  • Лысенко Олег Александрович
RU2784325C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА ЖИДКОСТИ ЦЕНТРОБЕЖНОГО НАСОСА С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ 2015
  • Лысенко Олег Александрович
RU2610909C1
СПОСОБ СТАБИЛИЗАЦИИ ДАВЛЕНИЯ НАСОСНОЙ УСТАНОВКИ С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ 2019
  • Лысенко Олег Александрович
RU2718091C1
СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ НАСОСА С ЭЛЕКТРОДВИГАТЕЛЕМ 2016
  • Лысенко Олег Александрович
RU2623195C1

Иллюстрации к изобретению RU 2 791 970 C1

Реферат патента 2023 года Способ определения давления центробежного насоса с асинхронным электроприводом

Изобретение относится к контрольно-измерительной технике и может быть использовано при контроле давления воды и других текучих сред. Проводят измерение давления на подающем трубопроводе, мгновенных величин токов и напряжений статора асинхронного двигателя, преобразование трехфазных значений токов и напряжений в двухфазные составляющие токов и напряжений, определение модуля вектора тока статора, модуля вектора напряжения статора. Последовательно выполняют временные задержки по крайней мере на 2 мс, получая задержанные дважды значения входного давления, задержанные дважды двухфазные значения токов и напряжения статора, задержанные дважды модули векторов тока и напряжения статора, подают вместе с одноименными незадержанными входными переменными на вход искусственной нейронной сети, с помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления сети и входного давления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными, определяют промежуточные значения, мгновенную величину давления жидкости центробежного насоса с асинхронным электроприводом, определяют задержанные дважды и четырежды значения выходного давления центробежного насоса, которые используют в качестве обратной связи. Техническим результатом является повышение точности определения давления. 1 ил.

Формула изобретения RU 2 791 970 C1

Способ определения давления жидкости, перекачиваемой насосом, включающий проведение измерения давления на подающем трубопроводе, мгновенных величин токов и напряжений статора асинхронного двигателя, преобразование трехфазных значений токов и напряжений в двухфазные составляющие токов и напряжений, определение модуля вектора тока статора, модуля вектора напряжения статора, отличающийся тем, что последовательно выполняют временные задержки по крайней мере на 2 мс, получая задержанные дважды значения входного давления, задержанные дважды двухфазные значения токов и напряжения статора, задержанные дважды модули векторов тока и напряжения статора, подают вместе с одноименными незадержанными входными переменными на вход искусственной нейронной сети, с помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления сети и входного давления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными, определяют промежуточные значения, мгновенную величину давления жидкости центробежного насоса с асинхронным электроприводом, определяют задержанные дважды и четырежды значения выходного давления центробежного насоса, которые используют в качестве обратной связи.

Документы, цитированные в отчете о поиске Патент 2023 года RU2791970C1

СПОСОБ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ЦЕНТРОБЕЖНОГО НАСОСА С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ 2020
  • Лысенко Олег Александрович
RU2743866C1
СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ НАСОСА С ЭЛЕКТРОДВИГАТЕЛЕМ 2016
  • Лысенко Олег Александрович
RU2623195C1
УСТРОЙСТВО ДЛЯ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ УСТАНОВОК ЭЛЕКТРОЦЕНТРОБЕЖНЫХ НАСОСОВ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ 2013
  • Ямалиев Виль Узбекович
  • Салахов Тагир Рамилевич
  • Шубин Станислав Сергеевич
RU2525094C1
US 8441222 B2, 14.05.2013.

RU 2 791 970 C1

Авторы

Лысенко Олег Александрович

Даты

2023-03-15Публикация

2021-12-28Подача