Изобретение относится к электротехнике и может быть использовано при учёте и контроле потребления воды и других текучих сред электроприводов центробежных насосов.
Известен способ определения расхода жидкости центробежного насоса с асинхронным электроприводом (патент RU 2610909, МПК G01F 9/00, опубл. 17.02.2017). Сущность изобретения: измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, преобразуют трехфазные значения токов и напряжений в двухфазные составляющие токов и напряжений, определяют оцененные составляющие тока статора, вычисляют разницу между оцененными значениями составляющих тока статора и текущими значениями составляющих стока статора, определяют оцененные значения составляющих потокосцеплений ротора, по оцененным значениям составляющих тока статора и потокосцепления ротора определяют электромагнитный момент асинхронного двигателя, с помощью оцененных значений составляющих потокосцепления ротора и разниц между оцененными значениями составляющих тока статора и текущими значениями составляющих тока статора, определяют момент нагрузки центробежного насоса, с помощью значений электромагнитного момента асинхронного двигателя и момента нагрузки центробежного насоса определяют текущую угловую скорость вращения рабочего колеса центробежного насоса. Определяют гидравлическую мощность насоса. По значениям гидравлической мощности и скорости вращения ротора определяют действительный расход насосной установки.
Наиболее близким к заявляемому является способ определения расхода жидкости центробежного насоса с асинхронным электроприводом (патент RU 2741267, МПК G01F 15/07, опубл. 22.01.2021), где проводят измерение мгновенных величин токов и напряжений статора асинхронного двигателя, определяют модуль вектора напряжения статора, определяют модуль вектора тока статора, мгновенные величины токов и напряжений статора асинхронного электродвигателя; модуль вектора напряжения статора, модуль вектора тока статора подают на вход искусственной нейронной сети, с помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными, определяют промежуточные значения по формуле расхода жидкости, фильтруют данные, тем самым определяя мгновенную величину объемного расхода жидкости центробежного насоса с асинхронным электроприводом.
Недостатками известных способов является недостаточная точность определения расхода в установившихся и переходных процессах, а также недостаточное быстродействие из-за использования фильтров в виде апериодических звеньев со значительными постоянными времени.
Задачей изобретения является повышение точности определения расхода жидкости насосной установки.
Отличием от известных способов является использование структуры нейронной сети c нелинейной авторегрессией с экзогенными входами с дополнительными данными, полученными путем задержки по времени входных сигналов, токов и напряжений на входе, а также наличие внутренней обратной связи выходного расхода с задержкой по времени, что повышает точность определения расхода перекачиваемой жидкости.
Данный технический результат достигается тем, что измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, определяют модуль вектора напряжения статора, определяют модуль вектора тока статора по формулам:
где
Определяют величины
С помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными определяют промежуточные значения расхода жидкости по формуле:
где
m – количество нейронов во входном слое (m=16),
n – количество нейронов в скрытом слое (n=14).
w1ij – синаптический вес j-го входа i-го нейрона скрытого слоя,
b1i0 – сдвиг i-го нейрона скрытого слоя,
w2i – синаптический вес i-го входа нейрона выходного слоя,
b20 – сдвиг нейрона выходного слоя.
Для определения мгновенной величины объемного расхода жидкости центробежного насоса с асинхронным электроприводом использовали трехслойную искусственную нейронную сеть c нелинейной авторегрессией с экзогенными входами с дополнительными данными, полученными путем задержки по времени входных сигналов на 3 мс, токов и напряжений на входе, а содержащую внутреннюю обратную связь по задержанным на 1 и 3 мс значениям выходного расхода, которая состоит из входного слоя, скрытого слоя и выходного слоя. Структура нейронной сети для определения расхода представлена на Фиг. Количество нейронов во входном слое равно 16, в скрытом слое - 14, в выходном слое - 1. Функция активации всех нейронов скрытого слоя - гиперболический тангенс, выходного слоя - линейная. Нейроны входного слоя передают входные сигналы на скрытый слой, не преобразуя их.
Перед началом работы обучают искусственную нейронную сеть на выборке, сформированной по опытным данным работы электропривода центробежного насоса с частотным регулированием и дроссельным регулированием подачи насоса. Для обучения искусственной нейронной сети использовали алгоритм Левенберга-Марквардта.
Процесс обучения искусственной нейронной сети выглядит следующим образом: все коэффициенты связей между нейронами инициализируются случайными числами, затем сети предъявляется обучающая выборка, и с помощью алгоритма обучения коэффициенты синаптических связей подстраиваются при выполнении циклической процедуры так, чтобы расхождение между обучающей выборкой и реакцией сети на соответствующие входные данные было минимальным.
В проведенных экспериментах на насосе К8-18 с асинхронным двигателем АД80М2 погрешность определения расхода по сравнению с эталонной моделью в установившемся режиме не превышает 3%.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения давления центробежного насоса с асинхронным электроприводом | 2021 |
|
RU2791970C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА ЖИДКОСТИ ЦЕНТРОБЕЖНОГО НАСОСА С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ | 2020 |
|
RU2741267C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ЦЕНТРОБЕЖНОГО НАСОСА С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ | 2020 |
|
RU2743866C1 |
Способ определения давления центробежного насоса с асинхронным электроприводом | 2022 |
|
RU2791689C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОЦЕНКИ ЧАСТОТЫ ВРАЩЕНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ | 2011 |
|
RU2476983C1 |
СПОСОБ ДИАГНОСТИКИ ВИТКОВЫХ ЗАМЫКАНИЙ В ОБМОТКЕ РОТОРА СИНХРОННОГО ГЕНЕРАТОРА | 2016 |
|
RU2629708C1 |
Способ определения расхода жидкости центробежного насоса с асинхронным электроприводом | 2022 |
|
RU2784325C1 |
СПОСОБ ПОЛУЧЕНИЯ СИГНАЛА ОЦЕНКИ ЧАСТОТЫ ВРАЩЕНИЯ РОТОРА И СИГНАЛА ОЦЕНКИ МОМЕНТА СОПРОТИВЛЕНИЯ НА ВАЛУ АСИНХРОННОГО ДВИГАТЕЛЯ | 2023 |
|
RU2822608C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА ЖИДКОСТИ ЦЕНТРОБЕЖНОГО НАСОСА С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ | 2015 |
|
RU2610909C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ВРАЩЕНИЯ РОТОРА АСИНХРОННЫХ ДВИГАТЕЛЕЙ | 2016 |
|
RU2621880C1 |
Изобретение относится к способу определения расхода жидкости центробежного насоса с асинхронным электроприводом. Измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, определяют модуль вектора напряжения статора, определяют модуль вектора тока статора. Последовательно выполняют временные задержки по крайней мере на 3 мс, получают задержанные трижды значения трехфазных токов и напряжений статора, задержанные трижды модули векторов тока и напряжений статора, данные величины подают на вход искусственной нейронной сети. С помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными, определяют промежуточные значения по формуле расхода жидкости, тем самым определяя мгновенную величину объемного расхода жидкости центробежного насоса с асинхронным электроприводом. Определяют задержанные одиножды и трижды значения объемного расхода жидкости центробежного насоса, которые используют в качестве обратной связи. Технический результат - повышение точности определения объемного расхода жидкости. 1 ил.
Способ определения количества текучей среды, перекачиваемой насосом, заключающийся в том, что проводят измерение мгновенных величин токов и напряжений статора асинхронного двигателя, определяют модуль вектора напряжения статора, определяют модуль вектора тока статора, отличающийся тем, что последовательно выполняют временные задержки по крайней мере на 3 мс, получая задержанные трижды значения трехфазных токов и напряжений статора, задержанные трижды модули векторов тока и напряжения статора подают на вход искусственной нейронной сети, с помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными, определяют промежуточные значения по формуле расхода жидкости, тем самым определяя мгновенную величину объемного расхода жидкости центробежного насоса с асинхронным электроприводом, определяют задержанные одиножды и трижды значения объемного расхода жидкости центробежного насоса, которые используют в качестве обратной связи.
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА ЖИДКОСТИ ЦЕНТРОБЕЖНОГО НАСОСА С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ | 2020 |
|
RU2741267C1 |
WO 2008154584 A1, 18.12.2008 | |||
СПОСОБ ВОЗВЕДЕНИЯ СООРУЖЕНИЙ, УСТОЙЧИВЫХ К РАЗРУШЕНИЮ ОТ ЗЕМЛЕТРЯСЕНИЙ, И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2462562C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА ЖИДКОСТИ ЦЕНТРОБЕЖНОГО НАСОСА С АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ | 2015 |
|
RU2610909C1 |
Авторы
Даты
2022-10-14—Публикация
2021-12-28—Подача