Изобретение относится к способам исследования и анализа топлива, а именно определения октанового числа моторных топлив и может быть использовано для контроля качества бензинов в нефтепереработке.
Известен способ определения октанового числа бензинов, основанный на определении инфракрасных спектров (патент RU 2189039 С2, 10.09.2002), т.е. спектров излучения с длиной волны λ>800 нм. В испытуемом образце производят замер величины поглощения в ближней ИК-области спектра при одной длине волны в диапазонах: 1572-1698 нм, 1700-1726 нм, 1824-1884 нм, 2058-2130 нм. Осуществляют преобразование этого сигнала в выходной сигнал, по которому определяют октановое число смеси.
Основными недостатками метода являются чувствительность к загрязнениям (замутненность пробы или запыленность приемника излучения), трудоемкость калибровки ИК-октанометров, так как они требуют настройки под каждый состав бензина в зависимости от технологии его получения. Точность анализа сильно зависит от состава стекла кювет.
Известен способ определения октанового числа бензинов не содержащих присадок в лабораторных условиях (патент RU 2258928 С1 20.08.2005). В данном способе используется экспресс хроматография и пикнометрическое определение плотности. Об октановом числе судят по индексу ароматичности и пикнометрической плотности по следующей зависимости:
где А - индекс ароматичности, который представляет собой долю площади группы пиков ароматических соединений на экспресс-хроматограмме образца, и его плотность при 20°С, %;
- плотность пробы при 20°С, кг/м3.
ОЧ', Кп и Ка - эмпирические коэффициенты, которые устанавливаются расчетным путем (представлены в таблице 9 патент RU 2258928 С1 20.08.2005);
Недостатком способа является привязанность к содержанию ароматических углеводородов в составе бензина, и как следствие сильной зависимости от углеводородного состава образца топлива. Точность метода в ряде случаев невысока.
Известен способ определения антидетонационной характеристики бензина (патент RU 2148826 С1 10.05.2000) основанный на газохроматографическом анализе индивидуального углеводородного состава бензина и определение октановых чисел углеводородов, входящих в его состав. В методе предварительно определяют коэффициенты совместного влияния углеводородов бензина при взаимодействии с кислородом воздуха, далее находят октановое число индивидуальных углеводородов, входящих в состав бензина по моторному методу, определяют мольное содержание каждого углеводорода в составе бензина и затем по полученным данным определяют октановое число бензина с учетом найденных коэффициентов совместного влияния. Относительное отклонение значений октанового числа от результатов по ГОСТ 2084-77 не превышает 2,5%.
Недостатком указанного способа является определение октанового числа по моторному методу, что не позволяет определить октановое число исследовательским методом, применяемое при реализации бензина на рынке.
Наиболее близким по технической сути и достигаемому результату является способ определения октановых чисел бензинов на основе газового хроматографического анализа в сочетании с оценкой неидеальности смеси [Смышляева Ю.А., Иванчина Э.Д., Кравцов А.В., Зыонг Ч.Т., Фан Ф. Разработка базы данных по октановым числам для математической модели процесса компаудирования товарных бензинов, Известия Томского политехнического университета, 2011, Т.318, №3, С. 75-80]. По прототипу определяют состав хроматографическим методом, затем рассчитывают суммарное октановое число смеси с учетом справочных данных по октановым числа индивидуальных компонентов, а затем рассчитывают поправку на неидеальность, учитывающую межмолекулярное взаимодействие через дипольные моменты молекул. Такой подход предусматривает возможность определения октановых чисел бензинов процесса изомеризации и процесса риформинга. В подходе применяют следующие зависимости.
где ОЧсм - октановое число смешения бензинов по исследовательскому методу; В - суммарное отклонение октановых чисел от аддитивности; Ci - концентрация i-го компонента, % масс; m - число компонентов.
где m - число компонентов; Bi, Bj - величина, характеризующая склонность i-й (j-й) молекулы к межмолекулярному взаимодействию, которую можно выразить через дипольный момент молекулы:
где α и n - коэффициенты, определяющие зависимость интенсивности межмолекулярных взаимодействий от дипольного момента D, численно равные 2,21 Дебай-n и 1,09 соответственно; D - дипольный момент молекулы, Дебай.
Недостатком способа является необходимость поиска справочных данных октановых чисел индивидуальных компонентов и ограниченность бензиновых фракций процессами риформинга и изомеризации из состава бензинов, кроме того низкая чувствительность газового хроматографического метода.
Технической проблемой предлагаемого изобретения является определение октанового числа широкого набора углеводородных смесей с температурами кипения от 35 до 200°С с возможностью определять оптимальные составы смеси на основе хроматографических методов и справочной информации необходимые для достижения заданного октанового числа смеси, а также возможности организации определения октановых чисел в потоке, используя автоматические анализаторы. Также ставится задача анализировать как товарные бензины, так и фракции компонентов товарных бензинов.
Технический результат - возможность определения октанового числа многокомпонентных углеводородных смесей с применением структурных дескрипторов.
Указанная задача решается тем, что в способе определения октановых чисел многокомпонентных углеводородных смесей проводят хроматографическое определение состава углеводородной смеси, затем рассчитывают октановое число смеси с поправкой на неидеальность через дипольные моменты молекул, согласно изобретению проводят определение октановых чисел индивидуальных компонентов на основе их зависимостей от структурных дескрипторов:
для класса алканов,
для алкенов, циклоалканов, аренов, где ОЧi - октановое число компонента; an, (n=0, …, 8) - коэффициенты зависимости, полученные методом наименьших квадратов, W - индекс Винера, R - индекс Рандича, L - сумма квадратов собственных значений матрицы смежности, затем определяют октановое число смеси по сумме октановых чисел компонентов с учетом поправки на неидеальность смеси.
Способ осуществляется следующей последовательностью операций:
1. Химический анализ состава углеводородной смеси методами хромато-масс-спектрометрии, жидкостной и газовой хроматографии, сверхкритической флюидной хроматографии;
2. Обработка экспериментальных данных;
3. Определение структурных дескрипторов индивидуальных углеводородных компонентов бензина (индекс Рандича, индекс Винера, сумма квадратов собственных значений топологической матрицы, индекс числа электронов и др.);
4. Определение дипольных моментов компонентов, полученных в результате анализа, методами квантовой химии либо экспериментальным способом.
5. Определение поправки учитывающей неидеальность;
6. Определение октанового числа бензиновой фракции по зависимостям.
Октановое число каждого компонента определяют по зависимости для алканов:
Для алкенов, циклоалканов, аренов:
где ОЧi - октановое число компонента; an, (n=0, …, 8) - коэффициенты зависимости, полученные методом наименьших квадратов, W - индекс Винера, R - индекс Рандича, L - сумма квадратов собственных значений матрицы смежности.
Индекс Винера рассчитывают по формуле:
где W - индекс Винера; n - число вершин в соответствующем молекуле графе; dij - кратчайшее расстояние между вершинами i и j.
Индекс сумма квадратов собственных значений матрицы смежности рассчитывают по формуле:
где - Ei собственное значение молекулярного графа
Индекс Рандича рассчитывают по формуле:
где - число ребер графа отходящих от i-ой вершины; - число ребер графа отходящих от j-ой вершины.
Коэффициенты зависимостей (5) и (6) представлены в таблицах 1-2.
Аддитивная составляющая представляет собой произведение концентрации компонентов смеси на их октановое число [2].
Преимуществом способа является сокращение времени прогнозирования и уменьшение трудозатрат при использовании ПЭВМ, расширение круга изучаемых смесей, возможность изучения октановых чисел модельных смесей. При применении поточных хроматографических анализаторов возможно прогнозирование октановых чисел углеводородных смесей в реальном времени на потоке продукта.
Примеры осуществления способа.
Пример 1.
Методом хромато-масс-спектрометрии в газовой фазе исследован состав бензинов процессов изомеризации (таблица 3).
Дипольные моменты соединений, входящих в состав бензинов вычисляли методом квантовой химии.
Расчетные данные для бензина изомеризации приведены в таблице 4.
Поправка на неидеальность смеси, оцененная через дипольные моменты (3) с учетом квантово-химических расчетов, составляет 28,12 ед. для бензина изомеризации.
Определение октанового числа по зависимостям, описанным ранее, дает значение аддитивного октанового числа 70,58 ед. для бензина изомеризации. С учетом поправки имеем октановое число для бензина изомеризации по формуле (2) ОЧсм=70.58+28.12=98.7 ≈ 98 ед., что согласуется с данными эксперимента определения октанового числа исследовательским методом 98 ед.
Пример 2.
Методом жидкостной хроматографии исследован состав бензинов процессов риформинга (таблица 5).
Дипольные моменты соединений входящих в состав бензинов вычисляли методом квантовой химии.
Расчетные данные для бензина риформинга приведены в таблице 6.
Поправка на неидеальность смеси, оцененная через дипольные моменты (2) с учетом квантово-химических расчетов, составляет 5,71 ед. для бензина риформинга.
Определение октанового числа по зависимостям, описанным ранее, дает значение аддитивного октанового числа в смеси бензина риформинга 91,1 ед. С учетом поправки имеем октановое число (3) ОЧсм=91,1+5.71=96.81 ≈ 97 ед. для бензина риформинга, что согласуется с данными эксперимента определения октанового числа исследовательским методом 98 ед.
Пример 3.
Методом газовой хроматографии исследован состав смеси товарного бензина (таблица 7).
Дипольные моменты соединений входящих в состав товарных бензинов вычисляли методом квантовой химии.
Расчетные данные для товарного бензина приведены в таблице 8.
Поправка на неидеальность смеси, оцененная через дипольные моменты (2) с учетом квантово-химических расчетов, составляет 21,34 ед.
Определение октанового числа по зависимостям, описанным ранее, дает значение аддитивного октанового числа в смеси компонента товарного бензина 76,03 ед. С учетом поправки имеем октановое число (3) ОЧсм=76,03+21.34=97.37 ≈ 98 ед. для товарного бензина, что согласуется с данными эксперимента определения октанового числа исследовательским методом 98 ед.
Пример 4
Методом сверхкритической флюидной хроматографии исследован состав легкого бензина (таблица 9).
Дипольные моменты соединений входящих в состав бензинов вычисляли методом квантовой химии.
Расчетные данные для легкого бензина приведены в таблице 10.
Поправка на неидеальность смеси, оцененная через дипольные моменты (3) с учетом квантово-химических расчетов, составляет 0,90 ед. для легкого бензина.
Определение октанового числа по зависимостям, описанным ранее, дает значение аддитивного октанового числа 66,2 ед. для легкого бензина, С учетом поправки имеем октановое число для легкого бензина по формуле (2) ОЧсм=66.2+0.90=67.1 ≈ 67 ед., что согласуется с данными эксперимента определения октанового числа моторным методом 66 ед.
Преимуществом предложенного метода является возможность определения октанового числа широкого набора углеводородных смесей с температурами кипения от 35 до 200°С, с возможностью определять оптимальные составы смеси на основе хроматографических методов и справочной информации. Высокая точность определения октановых чисел бензинов, анализируются как компоненты товарных бензинов, так и их смеси, возможна организация определения октановых чисел, в потоке, используя автоматические анализаторы.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ОКТАНОВЫХ ЧИСЕЛ СМЕШЕНИЯ ГАЗООБРАЗНЫХ КОМПОНЕНТОВ АВТОБЕНЗИНОВ | 2021 |
|
RU2793147C2 |
ВЫСОКООКТАНОВЫЙ АВТОМОБИЛЬНЫЙ БЕНЗИН И АНТИДЕТОНАЦИОННАЯ ДОБАВКА ДЛЯ ЕГО ПОЛУЧЕНИЯ | 2016 |
|
RU2616606C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА НЕ СОДЕРЖАЩИХ АНТИДЕТОНАЦИОННЫХ ПРИСАДОК АВТОМОБИЛЬНЫХ БЕНЗИНОВ, КАТАЛИЗАТОВ РИФОРМИНГА И ПРЯМОГОННЫХ БЕНЗИНОВЫХ ФРАКЦИЙ | 2003 |
|
RU2258928C1 |
АЛЬТЕРНАТИВНОЕ АВТОМОБИЛЬНОЕ ТОПЛИВО И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2015 |
|
RU2605952C1 |
ТОПЛИВНАЯ КОМПОЗИЦИЯ АВИАЦИОННОГО БЕНЗИНА | 2014 |
|
RU2554938C1 |
СПОСОБ ПОЛУЧЕНИЯ БЕНЗОЛА И ДЕБЕНЗОЛИРОВАННОЙ ВЫСОКООКТАНОВОЙ СМЕСИ | 2005 |
|
RU2287514C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИДЕТОНАЦИОННОЙ ХАРАКТЕРИСТИКИ БЕНЗИНА | 1999 |
|
RU2148826C1 |
Способ переработки рафината каталитического риформинга | 2023 |
|
RU2809282C1 |
СПОСОБ ПЕРЕРАБОТКИ ГАЗОВЫХ КОНДЕНСАТОВ | 1996 |
|
RU2145337C1 |
ТОПЛИВНАЯ КОМПОЗИЦИЯ АВИАЦИОННОГО БЕНЗИНА | 2014 |
|
RU2572242C2 |
Изобретение относится к способам исследования и анализа топлива, а именно определения октанового числа моторных топлив, и может быть использовано для контроля качества бензинов в нефтепереработке. Для осуществления способа определения октановых чисел многокомпонентных углеводородных смесей проводят хроматографическое определение состава углеводородной смеси. Затем рассчитывают октановое число смеси с поправкой на неидеальность через дипольные моменты молекул. При этом проводят определение октановых чисел индивидуальных компонентов на основе их зависимостей от структурных дескрипторов:
для класса алканов, для алкенов, циклоалканов, аренов, где ОЧ - октановое число компонента; an (n=0, …, 8) - коэффициенты зависимости, полученные методом наименьших квадратов, W - индекс Винера, R - индекс Рандича, L - сумма квадратов собственных значений матрицы смежности. Затем определяют октановое число смеси по сумме октановых чисел компонентов с учетом поправки на неидеальность смеси. Техническим результатом способа является возможность определения октанового числа многокомпонентных углеводородных смесей с применением структурных дескрипторов, а также возможность его применения к углеводородным смесям с неполной информацией об октановых числах компонентов. 10 табл., 4 пр.
Способ определения октановых чисел многокомпонентных углеводородных смесей, заключающийся в том, что проводят хроматографическое определение состава углеводородной смеси, затем рассчитывают октановое число смеси с поправкой на неидеальность через дипольные моменты молекул, отличающийся тем, что проводят определение октановых чисел индивидуальных компонентов на основе их зависимостей от структурных дескрипторов:
для класса алканов,
для алкенов, циклоалканов, аренов,
где ОЧi - октановое число компонента; an (n=0, …, 8) - коэффициенты зависимости, полученные методом наименьших квадратов, W - индекс Винера, R - индекс Рандича, L - сумма квадратов собственных значений матрицы смежности,
затем определяют октановое число смеси по сумме октановых чисел компонентов с учетом поправки на неидеальность смеси.
Ю.А | |||
СМЫШЛЯЕВА И ДР | |||
РАЗРАБОТКА БАЗЫ ДАННЫХ ПО ОКТАНОВЫМ ЧИСЛАМ ДЛЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОЦЕССА КОМПАУНДИРОВАНИЯ ТОВАРНЫХ БЕНЗИНОВ | |||
ИЗВЕСТИЯ ТОМСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА | |||
Способ приготовления лака | 1924 |
|
SU2011A1 |
Т | |||
Способ изготовления фасонных резцов для зуборезных фрез | 1921 |
|
SU318A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
М.Ю | |||
ДОЛОМАТОВ И ДР | |||
ПРОГНОЗ ОКТАНОВЫХ ЧИСЕЛ ЗАМЕЩЕННЫХ АЛКАНОВ ПО ТОПОЛОГИЧЕСКИМ ХАРАКТЕРИСТИКАМ МОЛЕКУЛ | |||
КАЗАНЬ | |||
БУТЛЕРОВСКИЕ СООБЩЕНИЯ | |||
Станок для придания концам круглых радиаторных трубок шестигранного сечения | 1924 |
|
SU2019A1 |
Авторы
Даты
2023-05-11—Публикация
2022-09-15—Подача