Изобретение относится к области металлургии и может быть использовано при производстве горячекатаных стальных полос, предназначенных для производства деталей машин и механизмов с гарантией изготовления изделий методом холодной деформации (например, холодной штамповкой) и нанесения покрытий у потребителя (покраска).
Известен способ производства высокопрочной многофазной стали с минимальной устойчивостью на разрыв 580 МПа преимущественно с двухфазной структурой для горячекатаной стальной полосы, состоящей из элементов в мас.%: углерод 0,075 до ≤ 0,105; кремний 0,200 до ≤ 0,300; марганец 1,000 до ≤ 2,000; хром 0,280 до ≤ 0,480; алюминий 0,010 до ≤ 0,060; фосфор ≤0,020; ниобий ≥0,005 до ≤ 0,025; азот ≤0,0100; сера ≤0,0050; остальное - железо, включая обычные сопутствующие стали не перечисленные выше. Способ включает непрерывный отжиг для создания двухфазной структуры, при этом горячекатаную стальную полосу нагревают в печи непрерывного отжига до температуры в диапазоне 700-950°C и указанную нагретую стальную полосу охлаждают от температуры отжига до промежуточной температуры 200-250°C со скоростью охлаждения 15-100°C/с, а затем охлаждают на воздухе до температуры окружающей среды со скоростью охлаждения 2-30°C/с (Патент РФ 2615957, опубл. 10.05.2016 г., МПК C21D 8/02, C21D 9/46, C22C 38/00, C23C 2/06).
Недостатком известного способа является обязательное применение дополнительной операции отжига, что в свою очередь приводит к экономической нецелесообразности применения данного способа, а также наличие недопустимого дефекта на поверхности проката в виде «тигровой» (красной) окалины.
Наиболее близким по технической сущности к предлагаемому изобретению является способ производства горячекатаной высокопрочной двухфазной стали, содержащей, мас.%: 0,06-0,09 углерода, 0,8-2,0 марганца, не менее 0,4 хрома, не более 0,08 кремния, не более 0,05 фосфора, 0,005-0,010 азота, остальное железо неизбежные примеси, при этом отношение Al/N не более 10 и суммарное содержание ниобия, титана и молибдена не более 0,015. Нагрев сляба осуществляют при температуре 1150-1300°С, горячую прокатку проводят с температурой конца прокатки 800-850°С, далее полосу охлаждают со скоростью 40-70°С/сек и до температуры смотки ниже 100°С, при этом полоса имеет структуру феррит плюс мартенсит, не содержащий перлит и бейнит, объемная доля мартенсита 10-25%. Горячекатаная полоса имеет предел прочности на разрыв по меньшей мере 590 МПА и относительное удлинение по меньшей мере 17,5% (Международная заявка WO2014149505, опубл.25.09.2014, МПК C21D 8/02, B21B 1/24).
Недостатком известного способа является низкий выход годного горячекатаного проката в связи с получаемой высокой анизотропией свойств, неудовлетворительным качеством по планшетности полосы, с короблением металлопроката, высоким пружинением металла при смотке и дальнейшей обработке при холодной штамповке.
Техническим результатом предлагаемого изобретения является увеличение выхода годных горячекатаных полос за счет повышения комплекса механических свойств: улучшении анизотропии и пригодности полос к дальнейшей обработке.
Технический результат достигается тем, что в способе производства горячекатаных стальных полос, включающем выплавку стали, непрерывную разливку в слябы, нагрев слябов, горячую прокатку, охлаждение и смотку полос в рулоны, согласно изобретению выплавляют сталь, содержащую, мас.%:
причем отношение кремния к фосфору в выплавляемой стали составляет 3-7, температуру конца горячей прокатки поддерживают в диапазоне 800-870 °С, охлаждение ведут в течение 5-25с со скоростью 8-30°С/с до температуры 650-800°С, а затем со скоростью 40-80 °С/с до температуры смотки не более 300°С, с обеспечением формирования в полосах структуры, содержащей 70-90% феррита и 10-30% мартенсита или мартенсита и непревращенного аустенита.
После смотки проводят травление горячекатаных полос.
Сущность изобретения заключается в следующем.
Углерод - один из упрочняющих элементов. Содержание углерода менее 0,04% не позволяет достигнуть требуемой прочности. В то же время увеличение содержания углерода более 0,09% приводит к неравномерности свойств по ее толщине в результате зональной ликвации и при охлаждении стали из γ-области сдвигает ферритный «нос» вправо, уменьшая таким образом количество полигонального феррита и увеличивая количество низкоуглеродистого бейнита (или игольчатого феррита). Одновременно возрастает доля γ-фазы к моменту смотки, что увеличивает прочность и уменьшает пластичность стали ниже нормы.
Наличие кремния способствует улучшению раскисленности стали и значительно ускоряет выделение полигонального феррита в низколегированных сталях. В то же время увеличение содержания кремния более 0,3% сопровождается возрастанием грубой «тигровой» окалины на поверхности проката и способствует увеличению количества силикатных включений.
Марганец обеспечивает твердорастворное упрочнение. Содержание марганца свыше 1,5 % ухудшает свариваемость и проводит к грубой зональной ликвации.
Суммарное содержание хрома и молибдена свыше 1,0 % снижают пластичность стали, а также экономически нецелесообразно.
Отношение кремния к фосфору в диапазоне 3-7 является необходимым для исключения «тигровой» (красной) окалины на поверхности проката.
Окончание прокатки при температуре 800-870 °С необходимо для максимального измельчения зерна.
Охлаждение в течение 5-25 сек. со скоростью 8-30°С/с до температуры 650-800 °С требуется для протекания фазового превращения при охлаждении на отводящем рольганге, чтобы выделить требуемое количество феррита 70-90 %.
При дальнейшем охлаждении от температуры 650-800 °С со скоростью 40-80°С/с до температуры смотки не более 300 °С непревращенный аустенит, обогащенный углеродом, превращается в мартенсит или/и м/а-фаза 10-30%. При температуре смотки выше 300 °С и/или снижении скорости охлаждения ниже 40-80 °С/с в структуре появляется бейнит (или перлит), прочностные свойства снижаются, штампуемость ухудшается.
Пример реализации способа.
В кислородном конвертере выплавили стали, химический состав которых приведен в таблице 1. Выплавленную сталь разливали на машине непрерывного литья в слябы. Слябы нагревали в нагревательной печи с шагающими балками и прокатывали на непрерывном широкополосном стане 2000. Горячекатаные полосы на отводящем рольганге охлаждали до определенных температур и сматывали в рулоны. Охлажденные рулоны подвергали соляно-кислотному травлению в непрерывном травильном агрегате. Технологические параметры и механические свойства проката приведены в таблице 2.
Из таблицы 2 следует, что при реализации заявленного способа производства (вариант № 3) достигается увеличение выхода годного за счет повышения комплекса механических
Химический состав стали
Технологические параметры и механические свойства проката
(бейнит 35%)
(бейнит 30%)
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2014 |
|
RU2547087C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2018 |
|
RU2689348C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ДВУХФАЗНОЙ ФЕРРИТО-МАРТЕНСИТНОЙ АВТОЛИСТОВОЙ СТАЛИ | 2016 |
|
RU2633858C1 |
ГОРЯЧЕКАТАНЫЙ СТАЛЬНОЙ ЛИСТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2019 |
|
RU2773722C1 |
Способ производства стального проката для изготовления гибких труб для колтюбинга (варианты) | 2022 |
|
RU2786281C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО РУЛОННОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2021 |
|
RU2773478C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ИЗ СТАЛИ С ДВУХФАЗНОЙ ФЕРРИТО-МАРТЕНСИТНОЙ СТРУКТУРОЙ | 2020 |
|
RU2749411C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ИЗ КОНСТРУКЦИОННОЙ СТАЛИ | 2018 |
|
RU2677426C1 |
Способ производства холоднокатаных стальных полос для упаковочной ленты | 2023 |
|
RU2814356C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОКАТАНОЙ ДВУХФАЗНОЙ ФЕРРИТО-МАРТЕНСИТНОЙ СТАЛИ, МИКРОЛЕГИРОВАННОЙ НИОБИЕМ | 2016 |
|
RU2633196C1 |
Изобретение относится к области металлургии и может быть использовано при производстве горячекатаного проката с двухфазной феррито-мартенситной структурой, предназначенного для производства деталей машин и механизмов с гарантией изготовления изделий методом холодной деформации. Способ производства горячекатаных стальных полос включает выплавку стали, непрерывную разливку в слябы, нагрев слябов, горячую прокатку, охлаждение и смотку полос в рулоны. Выплавляют сталь, содержащую, мас.%: углерод 0,04-0,09, кремний не более 0,3, марганец не более 1,5, суммарное содержание хрома и молибдена не более 1,0, железо и неизбежные примеси - остальное, причем отношение кремния к фосфору в выплавляемой стали составляет 3-7. Температуру конца горячей прокатки поддерживают в диапазоне 800-870 °С, охлаждение ведут в течение 5-25 с со скоростью 8-30 °С/с до температуры 650-800 °С, а затем со скоростью 40-80 °С/с до температуры смотки не более 300 °С, с обеспечением формирования в полосах структуры, содержащей 70-90% феррита и 10-30% мартенсита или мартенсита и непревращенного аустенита. Обеспечивается увеличение выхода годного горячекатаного проката с двухфазной феррито-мартенситной структурой за счет повышения комплекса механических свойств: улучшается анизотропия и пригодность металла к дальнейшей обработке. 1 з.п. ф-лы, 2 табл., 1 пр.
1. Способ производства горячекатаных стальных полос, включающий выплавку стали, непрерывную разливку в слябы, нагрев слябов, горячую прокатку, охлаждение и смотку полос в рулоны, отличающийся тем, что выплавляют сталь, содержащую, мас.%:
причем отношение кремния к фосфору в выплавляемой стали составляет 3-7, температуру конца горячей прокатки поддерживают в диапазоне 800-870 °С, охлаждение ведут в течение 5-25 с со скоростью 8-30 °С/с до температуры 650-800 °С, а затем со скоростью 40-80 °С/с до температуры смотки не более 300 °С, с обеспечением формирования в полосах структуры, содержащей 70-90% феррита и 10-30% мартенсита или мартенсита и непревращенного аустенита.
2. Способ по п.1, отличающийся тем, что после смотки проводят травление горячекатаных полос.
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2018 |
|
RU2689348C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2014 |
|
RU2547087C1 |
СПОСОБ ПРОИЗВОДСТВА ПОЛОС ИЗ НИЗКОЛЕГИРОВАННОЙ СВАРИВАЕМОЙ СТАЛИ | 2013 |
|
RU2551324C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО РУЛОННОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2021 |
|
RU2773478C1 |
EP 2949772 A4, 01.06.2016 | |||
US 20140352852 A1, 04.12.2014 | |||
WO 2014149505 A1, 25.09.2014. |
Авторы
Даты
2023-05-29—Публикация
2022-06-28—Подача