Изобретение относится к области термополяризации полимеров и биополимеров, в частности к устройствам для создания неоднородного температурного поля, измерения токов поляризации и деполяризации, а также температуры в нем, и может быть использовано в системах контроля окружающей среды и технологических процессов.
В физике длинных молекул (полимеров) одним из методов исследования поляризационных свойств является метод токов стимулированной деполяризации. Суть этого метода заключается в том, что, действуя внешним электрическим полем на полимеры при высоких температурах, добиваются максимальной ориентации кинетических фрагментов цепи, и это состояние «замораживают». Вслед за последующим нагреванием измеряются токи деполяризации.
При изучении фазовых переходов I рода необходимо измерять как токи поляризации (при кристаллизации из расплава), так и токи деполяризации (при плавлении). Данная проблема может быть решена при условии, если ориентирующее действие на дипольные моменты цепи макромолекулы полимера будет осуществлять внутреннее электрическое поле термического происхождения. Это может происходить только в неоднородном температурном поле.
Известно устройство для измерения среднего значения параметра, в частности температуры, неоднородной среды (Пат. РФ № 2107900; МПК G01K 3/02; опубл. 27.03.1998), содержащее датчики преобразования текущего значения температуры в напряжение, датчики, регистрирующие напряжение. Устройство также содержит группу компараторов, группу формирователей, группу элементов памяти, две группы элементов И, группу элементов задержки, два генератора, задатчик времени начала очередного цикла измерения, два элемента И, элемент ИЛИ, элемент памяти, счетчик, цифроаналоговый преобразователь, группу усилителей считывания, блок контроля, вычислительный блок и индикатор. Принято за прототип.
Недостатками известного устройства являются сложность конструкции и то, что оно не позволяет создавать неоднородное температурное поле, лишь измеряя температуру в нем.
Цель, на достижение которой направлено изобретение, заключается в разработке устройства, позволяющего одновременно создавать неоднородное температурное поле и измерять токи поляризации и температуру в нем.
Это достигается тем, что устройство для создания неоднородного температурного поля и измерения токов поляризации и температуры в нем, содержащее датчики преобразования текущего значения температуры в напряжение, датчики, регистрирующие напряжение, согласно изобретению, дополнительно содержит массивный нижний и верхний измерительный электроды и теплоизолятор, расположенный на торцах полости между массивным нижним и верхним измерительным электродами, выполненной с возможностью размещения в ней исследуемого образца, причем массивный нижний и верхний измерительный электроды содержат датчики преобразования текущего значения температуры в напряжение в виде хромель-копель термопар, связанные с датчиками, регистрирующими напряжение, в виде милливольтметров В7-21, при этом верхний измерительный электрод также связан с электрометрическим вольтметром ЭМ-1, который измеряет токи поляризации и деполяризации, сигнал с которого через пользовательский интерфейс передается на ПК, а массивный нижний электрод также выполнен с возможностью аккумулирования полученного количества теплоты.
На фиг. 1 представлена схема устройства для создания неоднородного температурного поля и измерения токов поляризации и температуры в нем.
Устройство для создания неоднородного температурного поля и измерения токов поляризации и температуры в нем содержит массивный нижний 1 и верхний измерительный 2 электроды и теплоизолятор 3, расположенный на торцах полости между массивным нижним 1 и верхним измерительным 2 электродами, выполненной с возможностью размещения в ней исследуемого образца 4 толщиной Δx. Массивный нижний 1 и верхний измерительный 2 электроды содержат датчики преобразования текущего значения температуры в напряжение в виде хромель-копель термопар 5 и 6 (наиболее эффективны для измерения поляризационных токов в исследуемом интервале температур), связанные с датчиками, регистрирующими напряжение, в виде милливольтметров (В7-21) 7 и 8, при этом верхний измерительный электрод 2 также связан с электрометрическим вольтметром (ЭМ-1) 9, который измеряет токи поляризации и деполяризации, сигнал с которого через пользовательский интерфейс 10 передается на профессиональный компьютер (ПК) 11, а массивный нижний электрод 1 также выполнен с возможностью аккумулирования полученного от термостата (на фиг. не показан) количества теплоты.
Устройство для создания неоднородного температурного поля и измерения токов поляризации и температуры в нем работает следующим образом.
Тепловой поток Q, попадая от термостата на массивный нижний электрод 1 (металл с коэффициентом теплопроводности λ1 и температурой Т1, регистрируемой хромель-копель термопарой 5, напряжение с которой передается на милливольтметр 7), достигает исследуемого образца 4 с коэффициентом теплопроводности λ2<λ1. Доходя до верхнего измерительного электрода 2, тепловой поток Q создает температуру Т2 (регистрируемую хромель-копель термопарой 6, напряжение с которой передается на милливольтметр 8), которая в текущий момент времени меньше, чем температура массивного нижнего электрода 1 (Т2 ˂ Т1). При этом теплоизолятор 3 предохраняет устройство от рассеивания теплового потока Q. Таким образом, создается градиент температуры (Т1 - Т2) / Δx, и возникает внутреннее электрическое поле термического происхождения, в котором кинетические фрагменты цепи макромолекулы исследуемого образца 4 создают нескомпенсированный гетерозаряд на его поверхности в результате ориентационной поляризации. Благодаря этому эффекту может быть определена поляризованность, а ее изменение приводит к возникновению токов поляризации, для измерения которых используется электрометрический вольтметр 9, передающий сигнал на ПК 11 через пользовательский интерфейс 10.
Такое исполнение заявляемого устройства позволяет одновременно создавать неоднородное температурное поле и измерять токи поляризации и температуру в нем.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения ионной электропроводности | 1986 |
|
SU1420504A1 |
МНОГОФУНКЦИОНАЛЬНОЕ УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ФИЗИКО-ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВ, ДИЭЛЕКТРИКОВ И ЭЛЕКТРОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ | 2007 |
|
RU2348045C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПОЯВЛЕНИЯ ТУННЕЛЬНОГО ЭФФЕКТА В ДИЭЛЕКТРИКАХ И ЭЛЕКТРОИЗОЛЯЦИОННЫХ МАТЕРИАЛАХ | 2007 |
|
RU2347216C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАЛЫХ РАЗНОСТЕЙ ТЕМПЕРАТУР | 2006 |
|
RU2337333C2 |
Термоанемометр | 1988 |
|
SU1569858A1 |
Способ тарирования естественной термопары резец-деталь | 2020 |
|
RU2734315C1 |
Устройство для измерения малых разностей температур | 2020 |
|
RU2760923C1 |
Устройство для определения температуры размягчения пеков | 1989 |
|
SU1651176A1 |
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ТОКОПРОВОДЯЩЕЙ ПОВЕРХНОСТИ | 1990 |
|
SU1750354A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ СТЕКЛОВАНИЯ ПОЛИПРОПИЛЕНА | 2005 |
|
RU2308714C2 |
Изобретение относится к области термополяризации полимеров и биополимеров, в частности к устройствам для создания неоднородного температурного поля, измерения токов поляризации и деполяризации, а также температуры в нем, и может быть использовано в системах контроля окружающей среды и технологических процессов. Устройство для создания неоднородного температурного поля и измерения токов поляризации и температуры в нем содержит массивный нижний и верхний измерительный электроды и теплоизолятор, расположенный на торцах полости между массивным нижним и верхним измерительным электродами, выполненной с возможностью размещения в ней исследуемого образца. Массивный нижний и верхний измерительный электроды содержат датчики преобразования текущего значения температуры в напряжение в виде хромель-копель термопар, связанные с датчиками, регистрирующими напряжение, в виде милливольтметров В7-21, при этом верхний измерительный электрод также связан с электрометрическим вольтметром ЭМ-1, который измеряет токи поляризации и деполяризации, сигнал с которого через пользовательский интерфейс передается на профессиональный компьютер, а массивный нижний электрод также выполнен с возможностью аккумулирования полученного от термостата количества теплоты. Технический результат – обеспечение возможности одновременно создавать неоднородное температурное поле и измерять токи поляризации и температуру в нем. 1 ил.
Устройство для создания неоднородного температурного поля и измерения токов поляризации и температуры в нем, содержащее датчики преобразования текущего значения температуры в напряжение, датчики, регистрирующие напряжение, отличающееся тем, что дополнительно содержит массивный нижний и верхний измерительный электроды и теплоизолятор, расположенный на торцах полости между массивным нижним и верхним измерительным электродами, выполненной с возможностью размещения в ней исследуемого образца, причем массивный нижний и верхний измерительный электроды содержат датчики преобразования текущего значения температуры в напряжение в виде хромель-копель термопар, связанные с датчиками, регистрирующими напряжение, в виде милливольтметров В7-21, при этом верхний измерительный электрод также связан с электрометрическим вольтметром ЭМ-1, который измеряет токи поляризации и деполяризации, сигнал с которого через пользовательский интерфейс передается на ПК, а массивный нижний электрод также выполнен с возможностью аккумулирования полученного количества теплоты.
МАТВЕЕВ Н.Н., ЛИСИЦЫН В.И., КАМАЛОВА Н.С., ЕВСИКОВА Н.Ю., "Формализованная модель поляризации биополимерного композита в неоднородном температурном поле", Пластические массы, номер 1-2, 2022, с.34 | |||
0 |
|
SU151203A1 | |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СРЕДНЕГО ЗНАЧЕНИЯ ПАРАМЕТРА, В ЧАСТНОСТИ ТЕМПЕРАТУРЫ, НЕОДНОРОДНОЙ СРЕДЫ | 1995 |
|
RU2107900C1 |
Прибор для проверки механических свойств датчиков давления | 1959 |
|
SU127458A1 |
Цифровой вольтметр для метода нелинейной вызванной поляризации | 1985 |
|
SU1273824A1 |
Муфта гидравлического разрыва пласта | 2024 |
|
RU2826078C1 |
Авторы
Даты
2023-05-31—Публикация
2022-09-09—Подача