Известен способ производства сорбента на биоугольной основе и тепловой энергии из лузги подсолнечника и установка для его реализации (RU 2 763 291, МПК: B01J 20/20, публикация патента 28.12.2021), который заключается в термической переработке лузги подсолнечника, причем тепловую переработку лузги подсолнечника осуществляют вихревым окислительным пиролизом, при этом сушка лузги подсолнечника начинается до поступления в реактор, в смесителе; лузга подсолнечника из приемного бункера посредством безосевого шнекового транспортера поступает в подающий бункер, затем шнековым питателем - в смеситель, куда одновременно поступают горячие парогазовые продукты пиролиза, отбираемые за воздухоохлаждаемым циклоном, затем смесь лузги подсолнечника и парогазовых продуктов пиролиза проходит через вентилятор рециркуляции и подается через прямоточную горелку с рассекателем в вихревой циклонный реактор, в котором начинается окислительный пиролиз при температурах 300-400°С; одновременно с вводом лузги подсолнечника в эту же зону вихревого циклонного реактора тангенциально подается горячий воздух вторичного дутья, подогретый в кожухе охлаждения воздухоохлаждаемого циклона, а заканчивается окислительный пиролиз в воздухоохлаждаемом циклоне при температурах 330-420°С, при этом в нем происходит одновременное отделение от парогазовых продуктов пиролиза твердых частиц, которые падают в теплоизолированный бункер сбора и представляют собой сорбент на биоугольной основе, а парогазовые продукты окислительного пиролиза выходят из воздухоохлаждаемого циклона и покидают установку.
Недостатком известного способа является ограниченный интервал температуры, не позволяющий выбрать режим тепловой обработки при более высокой температуре.
Известен также способ встречно-вихревой обработки сырья и аппарат встречно-вихревого слоя для обработки сырья (пат. РФ № 2771497, опубл. 05.05.2022), использующий для обработки различного вида сырья энергию вращающегося постоянного магнитного поля, воздействующего на ферромагнитные элементы, которые непосредственно взаимодействуют с обрабатываемым сырьем. Аппарат встречно-вихревого слоя для обработки сырья, содержащий состыкованную с нижней частью корпуса аппарата съемную рабочую камеру с ферромагнитными элементами, вращающуюся магнитную головку, размещенную в верхней части рабочей камеры, входной и выходной патрубки, при этом в верхней части рабочей камеры размещена дополнительная встречно-вращающаяся магнитная головка, установленная со смещением в горизонтальной плоскости относительно первой магнитной головки, под рабочей камерой установлена выходная камера, отделенная от рабочей камеры узлом отсева ферромагнитных элементов, при этом на дне выходной камеры установлена пробка с магнитом, входной патрубок расположен в верхней части рабочей камеры напротив магнитных головок, а выходной патрубок расположен в выходной камере.
Недостатком известного способа является установка вращающихся магнитных головок, усложняющих технологический процесс обработки материала.
Наиболее близким к заявляемому является способ получения порошка активированного угля (RU 2 769 520, МПК: C01B 32/312, публикация патента 01.04.2022), путем воздействия ферромагнитных элементов во вращающемся электромагнитном поле вихревого электромагнитного аппарата, включающий загрузку, измельчение, активацию водяным паром при высокой температуре и выгрузку. Подача воды осуществляется непосредственно в активную зону аппарата, где происходит измельчение и активация при соударении ферромагнитных активирующих элементов с каменноугольным сырьем – антрацитовой крошкой и водяным паром при температуре более 250°С, образующимся за счет превращения кинетической энергии движущихся элементов в тепловую, а выгрузка готового продукта осуществляется регулируемым потоком воздуха, выносящим фракции требуемого гранулометрического состава из активной зоны.
Недостатком известного способа является необходимость подачи сжатого воздуха, требующей установки дополнительного оборудования, усложняющем в свою очередь технологическую схему получения порошка, что в целом увеличивает затраты на производство сорбента. Кроме того фракционный состав угля после обработки на аппарате вихревого слоя в данном случае составил 0,07-0,10 мкм, что превышает размеры сорбента, полученного заявляемым способом.
Целью настоящего изобретения является получение эффективного сорбента способом подготовки углеродного сорбционного наноматериала из биоугля электромагнитным методом с целью его последующего применения для очистки природных и сточных вод на объектах коммунального и промышленного назначения.
Поставленная цель достигается тем, что в предлагаемом способе подготовки углеродного сорбционного наноматериала из биоугля электромагнитным методом измельчается, структурируется обрабатываемы материал, также оптимизируется его химический состав.
Исходный биоуголь из рисовой шелухи (соломы) получен путем карбонизации исходной рисовой шелухи (соломы) в муфельной печи при температуре 600°С в течение 30 минут с предварительной промывкой. Биоуголь рисовой шелухи (соломы) далее подвергался обработке в аппарате активации процессов для обработки материалов (RU 2170707, МПК: C02F 1/48, публикация патента 20.07.2001). Навеска биоугля рисовой шелухи (соломы), размешивалась в дистиллированной воде, помещалась в немагнитный цилиндр с ферромагнитными частицами m=200 г, далее подвергалась воздействию во вращающемся электромагнитным полем в течение 30 секунд в аппарате активации процессов для обработки материалов, после чего просушивалась в сушильном шкафу в течение 4 часов при t=105°С. Вращающиеся в электромагнитном поле ферромагнитные частицы обуславливают магнитостриционный эффект, приводящий к восстановлению оксидов на поверхности частиц обрабатываемого материала. Способ позволяет повысить содержание углерода в сорбенте с 43,3 до 78,5% по сравнению с исходным биоуглем (фиг. 1, табл. 1), снизить содержание примесей в сорбенте, а также измельчить сорбент до наноразмеров 1-50 нм с образованием пор диаметром до 1 нм (фиг. 2,3), тем самым повысив однородность состава. 5 Данный способ позволил осуществить подготовку углеродного сорбента, подтвердившего свою эффективность при обработке сточных вод в лабораторных условиях.
Краткое описание чертежей
Фиг. 1 Химический состав биоугля рисовой шелухи, обработанного электромагнитным способом.
Фиг. 2 Микрофотография поверхности частицы биоугля рисовой шелухи, обработанного электромагнитным способом, М 1:2 нм.
Фиг. 3 Микрофотография поверхности частицы биоугля рисовой шелухи, обработанного электромагнитным способом, М 1:10 нм.
Состав исходного сырья. Показатели качества исходного биоугля рисовой шелухи (соломы) и биоугля рисовой шелухи (соломы) с электромагнитной обработкой приведены в таблице 1.
Таблица 1 – Химический состав полученных образцов биоугля рисовой рисовой шелухи с и без электромагнитной обработкой
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА СОРБЕНТА НА БИОУГОЛЬНОЙ ОСНОВЕ И ТЕПЛОВОЙ ЭНЕРГИИ ИЗ ЛУЗГИ ПОДСОЛНЕЧНИКА И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2021 |
|
RU2763291C1 |
ПРИМЕНЕНИЕ БИОУГЛЯ ИЗ КОРЫ СОСНЫ И ЕЛИ ДЛЯ ОЧИСТКИ ВОДЫ ОТ МИКРОПЛАСТИКА | 2024 |
|
RU2825157C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ИЗ БИОУГЛЯ И МИКОРИЗЫ ДЛЯ ОЧИСТКИ ПОЧВЫ ОТ НЕФТЕЗАГРЯЗНЕНИЙ | 2022 |
|
RU2801148C1 |
СПОСОБ СОЗДАНИЯ БИОСОРБЕНТОВ С ЗАДАННЫМИ СВОЙСТВАМИ НА ОСНОВЕ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ОТХОДОВ | 2021 |
|
RU2782863C1 |
ИЗГОТОВЛЕНИЕ УГЛЕРОДСОДЕРЖАЩЕГО ИСХОДНОГО СЫРЬЯ ИЗ ИСТОЧНИКА УГЛЕРОДА, ВКЛЮЧАЮЩЕГО ОТХОДЫ | 2016 |
|
RU2702662C2 |
Установка для динамического концентрирования дихлорфеноксикарбоновых кислот и их метаболитов из водных сред | 2023 |
|
RU2810025C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО СОРБЕНТА НА ОСНОВЕ МИНЕРАЛЬНОГО И РАСТИТЕЛЬНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ | 2015 |
|
RU2597400C1 |
Сорбент для удаления радионуклидов из природных и сточных вод и способ его получения | 2023 |
|
RU2817978C1 |
Способ возделывания риса | 2024 |
|
RU2824824C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ СБОРА НЕФТИ И НЕФТЕПРОДУКТОВ ПРИ ИХ РАЗЛИВАХ ПУТЕМ УТИЛИЗАЦИИ РИСОВОЙ ШЕЛУХИ | 2005 |
|
RU2304559C2 |
Изобретение относится к области сорбционной химии. Предложен способ подготовки углеродного сорбционного наноматериала из биоугля электромагнитным методом, включающий получение исходного биоугля из рисовой шелухи путем карбонизации исходной рисовой шелухи в муфельной печи при температуре 600°С в течение 30 минут с предварительной промывкой, обработку полученного исходного биоугля из рисовой шелухи в аппарате активации процессов для обработки материалов, согласно которой навеска полученного исходного биоугля из рисовой шелухи размешивалась в дистиллированной воде и подвергалась воздействию во вращающемся электромагнитном поле с ферромагнитными частицами m=200 г в течение 30 секунд в аппарате активации процессов для обработки материалов, после чего просушивалась в сушильном шкафу в течение 4 часов при t=105°С. Технический результат - получение эффективного сорбента способом подготовки углеродного сорбционного наноматериала из биоугля электромагнитным методом с его последующим применением для очистки природных и сточных вод на объектах коммунального и промышленного назначения. 3 з.п. ф-лы, 3 ил., 1 табл.
1. Способ подготовки углеродного сорбционного наноматериала из биоугля электромагнитным методом, включающий получение исходного биоугля из рисовой шелухи путем карбонизации исходной рисовой шелухи в муфельной печи при температуре 600°С в течение 30 минут с предварительной промывкой, обработку полученного исходного биоугля из рисовой шелухи в аппарате активации процессов для обработки материалов, согласно которой навеска полученного исходного биоугля из рисовой шелухи размешивалась в дистиллированной воде и подвергалась воздействию во вращающемся электромагнитном поле с ферромагнитными частицами m=200 г в течение 30 секунд в аппарате активации процессов для обработки материалов, после чего просушивалась в сушильном шкафу в течение 4 часов при t=105°С.
2. Способ по п. 1, отличающийся тем, что способ подготовки углеродного сорбционного наноматериала из биоугля электромагнитным методом позволяет повысить содержание углерода в сорбенте с 43,3 до 78,5% по сравнению с исходным биоуглем, снизить содержание примесей в сорбенте.
3. Способ по п. 1, отличающийся тем, что способ подготовки углеродного сорбционного наноматериала из биоугля электромагнитным методом обеспечивает достижение наноразмеров получаемого материала.
4. Способ по п. 1, отличающийся тем, что способ подготовки углеродного сорбционного наноматериала из биоугля электромагнитным методом позволяет получить пористость в наночастицах размером до 1 нм.
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА АКТИВИРОВАННОГО УГЛЯ | 2021 |
|
RU2769520C1 |
СПОСОБ ВСТРЕЧНО-ВИХРЕВОЙ ОБРАБОТКИ СЫРЬЯ И АППАРАТ ВСТРЕЧНО-ВИХРЕВОГО СЛОЯ ДЛЯ ОБРАБОТКИ СЫРЬЯ | 2020 |
|
RU2771497C2 |
СПОСОБ ПРОИЗВОДСТВА СОРБЕНТА НА БИОУГОЛЬНОЙ ОСНОВЕ И ТЕПЛОВОЙ ЭНЕРГИИ ИЗ ЛУЗГИ ПОДСОЛНЕЧНИКА И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2021 |
|
RU2763291C1 |
WO 2007068778 A1, 21.06.2007 | |||
АППАРАТ АКТИВАЦИИ ПРОЦЕССОВ ДЛЯ ОБРАБОТКИ МАТЕРИАЛОВ | 2000 |
|
RU2170707C1 |
Авторы
Даты
2023-12-06—Публикация
2022-07-13—Подача