УСТРОЙСТВО ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА Российский патент 2024 года по МПК B01D53/00 

Описание патента на изобретение RU2814960C1

Изобретение относится к устройствам подготовки углеводородных газов к транспорту адсорбционным способом, включающий осушку и отбензинивание газа, и может быть использовано в газовой, нефтяной и других отраслях промышленности.

На установке подготовки углеводородного газа к транспорту, где применяются адсорбционные процессы, при сепарации исходного газа и регенерации адсорбента выделяется техническая вода, которая отводится с установки без рациональной утилизации.

Известна установка подготовки газа (Чуракаев, A.M. Газоперерабатывающие заводы и установки / А.М. Чуракаев. - М.: Недра, 1994 г. - с. 221. - рис. 11,2-а), которая включает приемный сепаратор с отводом углеводородного конденсата и техводы, блок адсорбционной осушки и отбензинивания газа с отводами подготовленного газа и газа после проведения регенерации адсорбента и оснащенный трубчатой печью нагрева газа регенерации, холодильник и сепаратор охлажденного газа после проведения регенерации адсорбента с отводами отработанного газа регенерации, углеводородного конденсата и техводы, отвод углеводородного конденсата с приемного сепаратора и отвод углеводородного конденсата с сепаратора охлажденного газа после проведения регенерации адсорбента соединен с колонной стабилизации углеводородов, снабженной отводами газов стабилизации и стабильного конденсата, при этом выделившиеся газы стабилизации направляют на собственные нужды, отработанный газ регенерации подается в поток газа, поступающего на адсорбционную осушку и отбензинивание газа.

Недостатком известного технического решения является потеря технической воды, вследствие отвода с установки, а также отсутствие дожимной компрессорной станции (далее - ДКС) на линии вывода подготовленного газа с установки, что ограничивает транспорт газа потребителю на дальние расстояния.

Наиболее близкой по технической сущности и достигаемому результату является установка подготовки углеводородного газа (Патент RU 2470865, C01G 5/00, B01D 53/00, F25J 3/00 опубл. 27.12.2012), включающая блок сепарации исходного газа с отводами углеводородного конденсата и технической воды (далее - техводы), который соединен с блоком адсорбционной осушки и отбензинивания газа, оснащенный трубчатой печью нагрева газа регенерации, с отводом газа, углеводородного конденсата и техводы после проведения регенерации адсорбента, и который соединен линией отвода подготовленного газа с ДКС, а также соединен совместно с блоком сепарации исходного газа линией отвода углеводородного конденсата с блоком стабилизации углеводородов, снабженным отводами стабильного конденсата и газов стабилизации, который соединен с линией на собственные нужды и с блоком компримирования, выход из которого соединен или с потоком исходного газа, или с отводом отработанного газа регенерации, или с отводом подготовленного газа.

Недостатком известного технического решения является потеря техводы вследствие отвода с установки.

Задачей изобретения является усовершенствование устройства подготовки природного газа, обеспечивающее повышение энергоффективности ее работы.

Техническим результатом является реализация ресурсоэнергосберегающей технологии, обеспечивающей снижение потерь техводы, вследствие утилизации ее в котле-утилизаторе, с получением горячей воды и пара за счет конвекционного теплообмена с использованием тепла отходящих дымовых газов, выходящих из газовой турбины газоперекачивающего агрегата (далее - ГПА) ДКС.

Указанный технический результат достигается тем, что в устройстве подготовки углеводородного газа, содержащем блок сепарации исходного газа с отводами углеводородного конденсата и воды, который соединен с блоком адсорбционной осушки и отбензинивания газа, оснащенный трубчатой печью нагрева газа регенерации, с отводом газа, углеводородного конденсата и воды после проведения регенерации адсорбента, и который соединен с ДКС через линию отвода подготовленного газа, которая через линию газа регенерации соединена с блоком адсорбционной осушки и отбензинивания газа, который также соединен совместно с блоком сепарации исходного газа линией отвода углеводородного конденсата с блоком стабилизации углеводородов, снабженным отводами стабильного конденсата и газов стабилизации, который соединен с линией на собственные нужды и с блоком компримирования, выход из которого соединен или с потоком исходного газа, или с отводом отработанного газа регенерации, или с отводом подготовленного газа, особенность заключается в том, что блок сепарации исходного газа и блок адсорбционной осушки и отбензинивания газа, соединены линией отвода технической воды с дополнительно установленным блоком рекуперации тепла дымовых газов ГПА, горячей воды и пара.

На практике для транспорта углеводородного газа по магистральным газопроводам в основном применяют ГПА с газотурбинными авиационными двигателями, топливом которых является топливный углеводородный газ.

Рабочий процесс устройства с рекуперацией теплоты отходящих дымовых газов осуществляется следующим образом: техническая вода, которая отводится от блока сепарации исходного газа и блока адсорбционной осушки в установленный котел-утилизатор, где за счет использования теплоты отходящих дымовых газов из турбины авиационного двигателя вырабатывается горячая вода и пар с температурой до 200°С. При сжигании топливного углеводородного газа в камере сгорания ГПА температура образовавшихся продуктов сгорания перед газовой турбиной составляет примерно 500°С. После расширения в газовой турбине продукты сгорания проходят котел-утилизатор, в котором они частично охлаждаются, отдавая часть теплоты технической воде, с получением горячей воды и пара, и затем через дымовую трубу выбрасываются в атмосферу. Далее горячая вода и пар с температурой до 200°С подается в котельную и на технические (или технологические) нужды.

Рекуперация теплоты отходящих дымовых газов с использованием котлов-утилизаторов является одним из наиболее доступных и энергоэффективных способов повышения экономичности установки подготовки углеводородного газа в эксплуатационных условиях, когда одним из главных направлений по дальнейшему совершенствованию газотранспортной системы страны является разработка и использование ресурсоэнергосберегающих технологий при транспорте природных газов.

Таким образом, совокупность предлагаемых признаков позволит обеспечить снижение потерь техводы, вследствие использования ресурсоэнергосберегающей технологии при утилизации техводы, за счет конвекционного теплообмена, с использованием тепла отходящих дымовых газов, выходящих из газовой турбины ГПА ДКС.

На фиг. 1 представлена блок - схема устройства подготовки углеводородного газа.

Устройство подготовки углеводородного газа работает следующим образом. Исходный газ (I) очищают от капельной влаги, механических примесей и отделяют от взвешенной части жидких углеводородов в блоке сепарации газов 1, из которого выводят техническую воду (II) и углеводородный конденсат (III), а газ сепарации (IV) очищают от паров воды и углеводородов С5+ в блоке адсорбционной осушки и отбензинивания газа 2 с получением отработанного газа регенерации (V), техводы (VI), углеводородного конденсата (VII), который совместно с углеводородным конденсатом (III) подвергают гидромеханическому разделению жидкой и газовой фазы в блоке стабилизации углеводородов 3 с получением стабильного углеводородного конденсата (VIII) и газов стабилизации (IX), который отводится с установки на собственные нужды и может сжиматься в блоке компримирования 4 для отвода в поток исходного газа (I), или в поток отработанного газа регенерации (V), или в поток подготовленного газа (X) часть которого используется в качестве газа регенерации (XI), поток подготовленного газа (X) компримируют в блоке 5, оснащенный ГПА, с отводом компримированного подготовленного газа с установки (XII) и дымовых газов (XIII) в блок рекуперации тепла дымовых газов ГПА, горячей воды и пара 6, где дополнительно подогревается весь поток отводимой техводы (XIV) с получением горячей воды (XV) и пара (XVI) на собственные нужды, а также отводятся охлажденные отработанные дымовые газы (XVII).

Похожие патенты RU2814960C1

название год авторы номер документа
УСТРОЙСТВО ПОДГОТОВКИ ПРИРОДНОГО ГАЗА 2022
  • Васюков Денис Александрович
  • Шабля Сергей Геннадьевич
  • Тищенко Ольга Ивановна
  • Вербовой Яков Викторович
  • Маляренко Владимир Викторович
  • Сыроватка Владимир Антонович
RU2820136C1
УСТРОЙСТВО ПОДГОТОВКИ ПРИРОДНОГО ГАЗА К ТРАНСПОРТУ 2023
  • Торянников Алексей Александрович
  • Тищенко Ольга Ивановна
  • Вербовой Яков Викторович
  • Сыроватка Владимир Антонович
RU2812657C1
УСТРОЙСТВО ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА К ТРАНСПОРТУ 2023
  • Торянников Алексей Александрович
  • Тищенко Ольга Ивановна
  • Вербовой Яков Викторович
  • Сыроватка Владимир Антонович
RU2814313C1
Способ подготовки углеводородного газа и установка для его осуществления 2016
  • Ясьян Юрий Павлович
  • Сыроватка Владимир Антонович
RU2645105C1
Адсорбционная установка газа 2023
  • Сыроватка Владимир Антонович
  • Тищенко Ольга Ивановна
  • Гукасян Александр Валерьевич
  • Шамаров Максим Владимирович
  • Сомов Михаил Николаевич
RU2808604C1
Адсорбционная установка 2023
  • Сыроватка Владимир Антонович
  • Тищенко Ольга Ивановна
  • Гукасян Александр Валерьевич
  • Шамаров Максим Владимирович
  • Сомов Михаил Николаевич
RU2813141C1
СПОСОБ ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Аджиев Али Юсупович
  • Аристович Юрий Валерьевич
  • Килинник Алла Васильевна
  • Дмитриев Артем Сергеевич
  • Черноскутов Александр Павлович
RU2470865C2
Установка подготовки углеводородного газа 2022
  • Гребенкина Анна Владимировна
  • Сыроватка Владимир Антонович
  • Косулина Татьяна Петровна
  • Колесников Александр Григорьевич
RU2784867C1
СТАНЦИЯ ПОДГОТОВКИ ПОПУТНОГО НЕФТЯНОГО ГАЗА 2014
  • Курочкин Андрей Владиславович
RU2564255C1
СПОСОБ ПОДГОТОВКИ ПОПУТНОГО НЕФТЯНОГО ГАЗА 2015
  • Курочкин Андрей Владиславович
RU2578281C1

Иллюстрации к изобретению RU 2 814 960 C1

Реферат патента 2024 года УСТРОЙСТВО ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА

Изобретение относится к устройствам подготовки углеводородных газов к транспорту адсорбционным способом, включающим осушку и отбензинивание газа, и может быть использовано в газовой, нефтяной и других отраслях промышленности. Устройство подготовки углеводородного газа адсорбционным способом, включающее блок сепарации исходного газа с отводами углеводородного конденсата и воды, который соединен с блоком адсорбционной осушки и отбензинивания газа, оснащенный трубчатой печью нагрева газа регенерации, с отводом газа, углеводородного конденсата и воды после проведения регенерации адсорбента, и который соединен с дожимной компрессорной станцией через линию отвода подготовленного газа, которая через линию газа регенерации соединена с блоком адсорбционной осушки и отбензинивания газа, который также соединен совместно с блоком сепарации исходного газа линией отвода углеводородного конденсата с блоком стабилизации углеводородов, снабженным отводами стабильного конденсата и газов стабилизации, который соединен с линией на собственные нужды и с блоком компримирования, выход из которого соединен или с потоком исходного газа, или с отводом отработанного газа регенерации, или с отводом подготовленного газа, при этом блок сепарации исходного газа и блок адсорбционной осушки и отбензинивания газа соединены линией отвода технической воды с дополнительно установленным блоком рекуперации тепла дымовых газов газоперекачивающего агрегата, горячей воды и пара. Технический результат - снижение потерь технической воды. 1 ил.

Формула изобретения RU 2 814 960 C1

Устройство подготовки углеводородного газа адсорбционным способом, включающее блок сепарации исходного газа с отводами углеводородного конденсата и воды, который соединен с блоком адсорбционной осушки и отбензинивания газа, оснащенный трубчатой печью нагрева газа регенерации, с отводом газа, углеводородного конденсата и воды после проведения регенерации адсорбента, и который соединен с дожимной компрессорной станцией через линию отвода подготовленного газа, которая через линию газа регенерации соединена с блоком адсорбционной осушки и отбензинивания газа, который также соединен совместно с блоком сепарации исходного газа линией отвода углеводородного конденсата с блоком стабилизации углеводородов, снабженным отводами стабильного конденсата и газов стабилизации, который соединен с линией на собственные нужды и с блоком компримирования, выход из которого соединен или с потоком исходного газа, или с отводом отработанного газа регенерации, или с отводом подготовленного газа, отличающееся тем, что блок сепарации исходного газа и блок адсорбционной осушки и отбензинивания газа соединены линией отвода технической воды с дополнительно установленным блоком рекуперации тепла дымовых газов газоперекачивающего агрегата, горячей воды и пара.

Документы, цитированные в отчете о поиске Патент 2024 года RU2814960C1

СПОСОБ ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Аджиев Али Юсупович
  • Аристович Юрий Валерьевич
  • Килинник Алла Васильевна
  • Дмитриев Артем Сергеевич
  • Черноскутов Александр Павлович
RU2470865C2
СПОСОБ АБСОРБЦИОННОЙ ОСУШКИ УГЛЕВОДОРОДНОГО ГАЗА 2002
  • Ланчаков Г.А.
  • Кульков А.Н.
  • Истомин В.А.
  • Ставицкий В.А.
  • Ефимов Ю.Н.
RU2199375C1
СПОСОБ ПОДГОТОВКИ ПОПУТНОГО НЕФТЯНОГО ГАЗА 2011
  • Ланчаков Григорий Александрович
  • Сорокин Станислав Викторович
  • Кабанов Олег Павлович
  • Ставицкий Вячеслав Алексеевич
  • Тугарев Василий Михайлович
  • Цветков Николай Александрович
  • Дороничев Николай Александрович
  • Кошелев Анатолий Владимирович
  • Колинченко Игорь Васильевич
RU2471979C2
СПОСОБ ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА К ТРАНСПОРТУ 2004
  • Ланчаков Григорий Александрович
  • Сорокин Станислав Викторович
  • Кульков Анатолий Николаевич
  • Кабанов Олег Павлович
  • Ставицкий Вячеслав Алексеевич
  • Цветков Николай Александрович
  • Абдуллаев Равшан Вазирович
  • Типугин Антон Александрович
  • Истомин Владимир Александрович
  • Салихов Юнир Биктимирович
RU2294429C2
УСТАНОВКА ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА 2002
  • Аджиев А.Ю.
  • Бойко С.И.
  • Килинник А.В.
  • Шеин А.О.
RU2224581C1

RU 2 814 960 C1

Авторы

Васюков Денис Александрович

Шабля Сергей Геннадьевич

Тищенко Ольга Ивановна

Торянников Алексей Александрович

Вербовой Яков Викторович

Сыроватка Владимир Антонович

Даты

2024-03-07Публикация

2022-12-27Подача