Изобретение относится к химической промышленности, в том числе, нефтехимии, газохимии, углехимии и может быть использовано при получении катализаторов для синтеза углеводородов из СО и Н2 по методу Фишера-Тропша.
Известен способ получения синтетических жидких топлив из углеводородных газов по методу Фишера-Тропша, включающий каталитическую конверсию углеводородных газов путем синтеза Фишера-Тропша, отделение полученных синтетических жидких углеводородов от углеводородных газов и реакционной воды и разделение полученных жидких углеводородов на фракции, после чего бензиновую, керосиновую и дизельную фракции по отдельности подвергают гидрированию, гидроизомеризации и изодепарафинизации. При этом на стадии синтеза углеводородов по методу Фишера-Тропша используют гранулированный катализатор, содержащий, масс. %: 5-30 кобальта; 10-80 высококремнеземного цеолита типа ZSM или Hβ; остальное - оксид алюминия или оксид циркония. На стадии гидрирования - гранулированный катализатор, содержащий, масс. %: 0,2-2,0 палладий; остальное - оксид алюминия. На стадии гидроизомеризации и изодепарафинизации - гранулированный катализатор, содержащий, масс. %: 0,1-0,6 платина; 5-40 высококремнеземный цеолит типа ZSM или Hβ, преимущественно ZSM-23; остальное - оксид алюминия (Патент RU №2444557, C10G 2/00, C10G 69/00, B01J 21/04, B01J 23/42, B01J 23/44, B01J 23/75, B01J 29/40, 10.03.2012 Бюл. №7).
Недостатками способа являются: необходимость использования для получения синтетических жидких топлив ряда технологических стадий; как следствие, низкая эффективность процесса в целом, тогда как в настоящее время активно развиваются создаются прямые (интегрированные) технологии в катализаторы процессв, основанные на совмещении процессов синтеза Фишера-Тропша и гидропереработки и появлении бифункциональных катализаторов, совмещающих функции катализатора синтеза Фишера-Тропша и цеолита; использование ряда катализаторов, в том числе, на основе дорогостоящих и дефицитных металлов платиновой группы.
Известен кобальтовый катализатор для прямого селективного синтеза фракций высококачественного бензина из синтез-газа, полученный методом нанесения, состоящий из кобальта, промотора и модифицированного или гидротермально синтезированного молекулярного сита, обладающего определенными - величиной модуля молекулярного сита, кислотностью поверхности и параметрами микропористо-мезопористой структуры, в котором содержится, масс. %: кобальт - 1-30, предпочтительно 8-15; промотор - 0,01-5, предпочтительно 0,05-2 (один или несколько элементов, выбранных из группы, в состав которой входят металлы групп IA, IIA Периодической системы Д.И. Менделеева, переходные металлы и редкоземельные элементы, предпочтительно выбранные среди металлов Na, K, Mg, Mn, Ru, Zr, Се и La, более предпочтительно выбранные среди Mn, Na и Ru); молекулярное сито (одно или несколько из группы Beta, ZSM-5, MOR, Y и МСМ-22) - остальное (Патент RU №2484897, B01J 29/00, B01J 29/42, B01J 23/75, B01J 37/04, С07С 1/04, C10G 2/00, 20.06.2013, Бюл. №17).
Недостатками катализатора являются: использование ряда дорогостоящих и дефицитных промоторов - переходных металлов и редкоземельных элементов; низкая селективность синтеза в отношении образования углеводородов изо- и разветвленного строения.
Известен кобальтовый катализатор для прямого получения синтетической нефти, обогащенной изопарафинами, полученный методом смешения порошков кобальта Ренея, металлического алюминия и связующего - цеолита в Н-форме и бемита, содержащий, % масс: кобальт Ренея - 10-50, металлический алюминий - 10-50, связующий компонент - 15-80, в том числе цеолит в Н-форме (цеолит β и/или морденит, и/или ZSM-5 в Н-форме) - 20-70, бемит - остальное (Патент RU №2524217, B01J 21/02, B01J 25/00, B01J 29/04, С07С 1/04, 27.07.2014, Бюл. №21).
Недостатками катализатора являются: высокое содержание активного компонента - кобальта Ренея, дорогостоящего и дефицитного металла; высокое содержание металлического алюминия; невысокая селективность синтеза в отношении образования углеводородов изо- и разветвленного строения.
Известен кобальтовый катализатор прямого синтеза жидких углеводородов по методу Фишера-Тропша, полученный методом смешения порошков кобальтового катализатора на оксидном носителе, цеолитов ZSM-5, Y, β и связующего, содержащий, % масс: кобальтовый катализатор, в том числе кобальт - 20-30, промоторы, выбранные из группы рений, рутений, - 0,5-1,0, оксидный носитель, выбранный из группы оксид алюминия, диоксид кремния, диоксид титана, диоксид циркония или их смеси, - 80-70 - остальное; цеолит, выбранный из группы ZSM-5, Y, β, - 30-70, связующее бемит - 10-20, добавки палладия или металлов подгруппы железа Периодической системы Д.И. Менделеева - железо, кобальт, никель, - 0,5-8,0 (Патент RU №2493913, B01J 37/04, B01J 37/02, B01J 35/00, B01J 37/16, B01J 23/75, С07С 1/04, 27.09.2013, Бюл. №27).
Недостатками катализатора являются: использование ряда дорогостоящих и дефинитных оксидных носителей; высокое содержание активного компонента - кобальта, дорогостоящего и дефицитного металла; промотирование кобальтового катализатора на оксидном носителе рением или рутением - дорогостоящими и дефицитными металлами.
Наиболее близким аналогом (прототип) является кобальтовый катализатор для прямого синтеза углеводородов из СО и Н2 по методу Фишера-Тропша, селективный в отношении образования углеводородов С5-С10, С11-C18, включающий кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит ZSM-5 в Н-форме и связующее бемит, при следующем содержании компонентов, % масс: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 30-40, связующее бемит - 30-40, цеолит ZSM-5 в Н-форме - остальное; причем кобальтовый катализатор с добавкой алюминия на силикагелевом носителе содержит кобальт - 5,7-7,6, добавка алюминия - 0,3-0,4, силикагелевый носитель - остальное (Патент RU №2639155, B01J 29/46, B01J 37/04, B01J 37/08, С07С 1/04, 20,12.17, Бюл. №35).
Недостатками катализатора являются: низкая селективность синтеза в отношении образования углеводородов изо- и разветвленного строения; высокое содержание олефинов в составе углеводородов дизельной фракции С11-С18.
Известен способ приготовления кобальтового катализатора для прямого селективного синтеза фракций высококачественного бензина из синтез-газа, полученный методом нанесения, включающий: смешение навески кобальтовой соли с растворителем и получение раствора; добавление навески промотора, согласно содержанию компонентов, к приготовленному раствору кобальтовой соли, перемешивание; добавление навески модифицированного (при повышенной температуре и перемешивании с использованием основного раствора, содержащего ионы щелочного или щелочноземельного металла в виде одного или нескольких соединений, выбранных из группы, в состав которой входят соли, гидроокись и окись щелочного или щелочноземельного металла, преимущественно водного, концентрацией от 0,005 моль/л до концентрации насыщенного раствора, с последующими - фильтрацией, промывкой, сушкой, и комплексом технологических операций по переводу методом ионного обмена в Н-форму) или гидротермально синтезированного молекулярного сита, согласно содержанию компонентов, к приготовленному раствору кобальтовой соли; перемешивание; выдерживание в заданных условиях; выпаривание; сушку; прокаливание; формование; восстановление предшественника катализатора (Патент RU №2484897, B01J 29/00, B01J 29/42, B01J 23/75, B01J 37/04, С07С 1/04, C10G 2/00, 20.06.2013, Бюл. №17).
Недостатками способа являются: необходимость приготовления молекулярного сита с определенными - величиной модуля цеолита, кислотностью поверхности и параметрами микропористо-мезопористой структуры, в том числе полученного методом гидротермального синтеза; продолжительность стадии нанесения кобальта при получении влажного катализатора и связанные с этим дополнительные энергозатраты.
Известен способ получения кобальтового катализатора для прямого получения синтетической нефти, обогащенной изопарафинами, включающий смешение порошков связующих компонентов - цеолита в Н-форме и бемита; пептизацию смеси раствором азотной кислоты; смешения полученного геля с мелкодисперсными порошками кобальта Ренея, металлического алюминия и жидкой фазы - триэтиленгликоль и/или этиловый спирт, до однородной пасты; гранулирование (методом экструзии); прокаливание на воздухе или в инертной атмосфере (Патент RU №2524217, B01J 21/02, B01J 25/00, B01J 29/04, С07С 1/04, 27.07.2014, Бюл. №21).
Недостатками способа являются необходимость: получения гранулированного пористого композиционного материала, как смеси, в том числе, металлических компонентов; содержащего пространственную теплопроводящую сеть из металлического алюминия и кобальта Ренея с теплопроводностью не менее 4 Вт/м⋅К; формирования определенной пористой структуры гранул катализатора с заданной долей макропор и мезопор в открытой пористости.
Известен способ приготовления кобальтового катализатора для прямого синтеза жидких углеводородов по методу Фишера-Тропша, включающий: приготовление оксидного носителя - прекурсор основного компонента носителя прокаливают, измельчают, гранулируют, прокаливают; приготовление кобальтового катализатора на оксидном носителе - нанесение кобальта методом пропитки проводят в одну или несколько - не более трех, стадий, прокаливают после каждой стадии, введение промоторов проводят на последней стадии внесения активного компонента или после внесения активного компонента, прокаливают, измельчают; смешение порошков кобальтового катализатора на оксидном носителе и цеолита; гранулирование со связующим; прокаливание; проведение в растворе ионного обмена гранул полученного катализатора с добавками металлов - приготовление раствора добавок металлов, ионный обмен в суспензии гранул, сушку суспензии; прокаливание; активацию водородом (Патент RU №2493913, B01J 37/04, B01J 37/02, B01J 35/00, B01J 37/16, B01J 23/75, С07С 1/04, 27.09.2013, Бюл. №27).
Недостатками способа являются необходимость: получения носителя катализатора путем прокаливания прекурсора основного компонента, измельчения, гранулирования, прокаливания оксидного носителя; получения кобальтового катализатора методом пропитки оксидного носителя в одну или несколько стадий, прокаливания после каждой стадии, введения промоторов на последней стадии внесения активного компонента или после внесения активного компонента, прокаливания, измельчения; проведения в растворе ионного обмена гранул полученного катализатора с добавками металлов, сушки, прокаливания.
Наиболее близким аналогом (прототип) является способ получения кобальтового катализатора для прямого синтеза углеводородов из СО и Н2 по методу Фишера-Тропша, селективного в отношении образования углеводородов С5-С10, С11-С18, включающего кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит ZSM-5 в Н-форме и связующее бемит, согласно которому: получают кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, причем предварительную подготовку носителя проводят в режиме сушки 2-4 ч при температуре 140-160°С, на стадии пропитки носителя в водный раствор нитрата кобальта концентрацией 35-55% масс. вводят добавку алюминия в виде нитрата алюминия при массовом соотношении Со:Al2O3 в пропиточном растворе 100:5, термообработка катализатора включает сушку - сначала 2-4 ч при температурах 80-100°С, затем 2-4 ч при температуре 100-150°С, и прокаливание 4-6 ч при температуре 250-300°С; кобальтовый катализатор с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм, смешивают с порошками цеолита ZSM-5 в Н-форме и связующего бемита с размерами частиц менее 0,1 мм, исходя из массового соотношения компонентов кобальтовый катализатор с добавкой алюминия на силикагелевом носителе: цеолит ZSM-5 в Н-форме: связующее бемит, и добавляют раствор азотной кислоты, который готовят внесением 1-2 мл азотной кислоты концентрацией 65% в 90-100 мл дистиллированной воды (на 100 г смеси порошков), и триэтиленгликоль, исходя из объемного соотношения азотная кислота: триэтиленгликоль в смеси 1:3, перемешивают до получения однородной массы, при постоянном перемешивании массу нагревают и выдерживают при температуре 60-70°С до остаточной влажности 70% масс., формуют гранулы катализатора диаметром менее 2 мм, сушат 20-24 ч при температуре 20-25°С, 4-6 ч при температуре 80-100°С, 2-4 ч при температуре 100-150°С, прокаливают 4-6 ч при температуре 340-360°С, измельчают до частиц размером 2-3 мм, а затем проводят активацию водородом в течение 0,75-1 ч при объемной скорости газа 3000 ч-1 и температуре 380-400°С (Патент RU №2639155, B01J 29/46, B01J 37/04, B01J 37/08, С07С 1/04, 20,12.17, Бюл. №35).
Недостатками способа получения катализатора являются: низкая селективность синтеза в отношении образования углеводородов изо- и разветвленного строения; высокое содержание олефинов в составе углеводородов дизельной фракции С11-C18.
Задачей настоящего изобретения при изменении состава и способа приготовления является создание кобальтового катализатора для синтеза углеводородов из СО и Н2 по методу Фишера-Тропша с повышенными каталитическими свойствами в отношении образования углеводородов изо- и разветвленного строения и невысоким содержанием олефинов в составе углеводородов дизельной фракции С11-C18; получение эффекта от ведения синтеза с высокой производительностью и селективностью при повышенной температуре и конверсии синтез-газа в продукты реакции.
Поставленная задача, согласно предлагаемому изобретению, в части состава, достигается тем, что кобальтовый катализатор для синтеза углеводородов из СО и Н2 по методу Фишера-Тропша, селективный в отношении образования углеводородов изо- и разветвленного строения, включает кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит в Н-форме и связующее бемит, причем цеолит ZSM-23 в Н-форме, при следующем содержании компонентов, % масс.:
кобальтовый катализатор с добавкой алюминия
на силикагелевом носителе - 30-40;
связующее бемит - 30-40;
цеолит ZSM-23 в Н-форме - 30-40;
причем кобальтовый катализатор с добавкой алюминия на силикагелевом носителе содержит, % масс.:
кобальт - 6,5-8,7;
добавка алюминия - 0,33-0,43;
силикагелевый носитель - остальное.
Поставленная задача, согласно предлагаемому изобретению, в части способа получения кобальтового катализатора для синтеза углеводородов по методу Фишера-Тропша, селективного в отношении образования углеводородов изо- и разветвленного строения, решается тем, что используется способ, включающий приготовление кобальтового катализатора с добавкой алюминия на силикагелевом носителе, -предварительную подготовку носителя, пропитку носителя водным раствором нитрата кобальта с добавкой алюминия, термообработку и активацию катализатора водородом, при этом предварительную подготовку носителя проводят в режиме сушки 2-4 ч при температуре 140-160°С, на стадии пропитки носителя в водный раствор нитрата кобальта концентрацией 35-55% масс. вводят добавку алюминия в виде нитрата алюминия при массовом соотношении Со:Al2O3 в пропиточном растворе 100:5, термообработка катализатора включает сушку - сначала 2-4 ч при температурах 80-100°С, затем 2-4 ч при температуре 100-150°С, прокаливание 4-6 ч при температуре 250-300°С; активацию катализатора проводят водородом в течение 0,75-1 ч при температуре 380-400°С; измельчение кобальтового катализатора с добавкой алюминия на силикагелевом носителе и смешение с порошками цеолита ZSM-23 в Н-форме и связующего бемита; пептизацию при добавлении раствора азотной кислоты и триэтиленгликоля, перемешивание до получения однородной массы; при постоянном перемешивании нагревание и удаление избыточной влаги; формование; сушку; прокаливание; измельчение; активацию водородом; причем кобальтовый катализатор с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм, смешивают с порошками цеолита ZSM-23 в Н-форме и связующего бемита с размерами частиц менее 0,1 мм, исходя из массового соотношения кобальтовый катализатор с добавкой алюминия на силикагелевом носителе: цеолит ZSM-23 в Н-форме: связующее бемит, и добавляют раствор азотной кислоты, который готовят внесением 1-2 мл азотной кислоты концентрацией 65% в 90-100 мл дистиллированной воды (на 100 г смеси порошков), и триэтиленгликоль, исходя из объемного соотношения азотная кислота: триэтиленгликоль в смеси 1:3, перемешивают до получения однородной массы; при постоянном перемешивании массу нагревают и выдерживают при температуре 60-70°С до остаточной влажности 70%; формуют гранулы катализатора диаметром менее 2 мм; сушат 20-24 ч при температуре 20-25°С, 4-6 ч при температуре 80-100°С, 2-4 ч при температуре 100-150°С; прокаливают 4-6 ч при температуре 340-360°С; измельчают до частиц размером 2-3 мм; активацию катализатора проводят водородом в течение 0,75-1 ч при объемной скорости газа 3000 ч-1 и температуре 380-400°С.
Предлагаемый состав кобальтового катализатора для синтеза углеводородов по методу Фишера-Тропша с повышенными каталитическими свойствами в отношении образования углеводородов изо- и разветвленного строения, характеризуется возможностью повышения селективности и производительности синтеза при замене цеолитного компонента катализатора, что, дает возможность улучшить качество готового продукта.
Предлагаемый способ приготовления кобальтового катализатора для синтеза углеводородов по методу Фишера-Тропша с повышенными каталитическими свойствами в отношении образования углеводородов изо- и разветвленного строения, характеризуется возможностью повышения селективности и производительности синтеза при замене цеолитного компонента катализатора, что, без изменения технологии приготовления катализатора, дает возможность повысить производительность катализатора улучшить качество готового продукта.
Полученный технический результат - создание активного и селективного катализатора для синтеза углеводородов по методу Фишера-Тропша, обеспечивается сочетанием в составе катализатора кобальтового катализатора с добавкой алюминия на силикагелевом носителе и цеолита ZSM-23 в Н-форме в качестве сокатализатора, обладающего кислыми свойствами и позволяющего проводить гидрооблагораживание образующихся высокомолекулярных углеводородов; в процессе приготовления катализатора создаются условия для формирования такой структуры бифункционального активного компонента, которая определяет высокую активность и селективность катализатора, что подтверждается большим, чем в известном способе, количеством образующихся углеводородов изо- и разветвленного строения и высокой производительностью катализатора.
Исследование свойств катализаторов в процессе синтеза углеводородов из СО и Н2 по методу Фишера-Тропша проводили в трубчатом реакторе со стационарным слоем катализатора при давлении 2,0 МПа и объемной скорости газа 1000 ч-1 в интервале температур 230-260°С.Мольное соотношение СО:Н2 в синтез-газе составляло 1:2. Состав газообразных продуктов определяли комплексом приемов, принятых в газовой хроматографии. Состав жидкофазных углеводородов С5+ исследовали методом капиллярной газожидкостной хромато-масс-спектрометрии на хроматографе Agilent GC 7890 с масс-селективным детектором MSD 5975С и капиллярной колонкой HP-5MS.
Об активности катализаторов судили по конверсии СО, селективности, производительности катализаторов в расчете на кг/(м3кат.⋅ч), фракционному и углеводородному составу продуктов синтеза.
Обобщенные сравнительные данные по оценке активности и селективности известного и предлагаемого катализаторов, полученные в процессе синтеза углеводородов из СО и Н2 по методу Фишера-Тропша при температуре 240°С, приведены в таблице 1. В таблице 2 для катализатора в соответствии с примером 4 представлены аналогичные данные, полученные при повышенной температуре синтеза углеводородов (250°С). В таблицах 3 и 4 для катализаторов в соответствии с примерами 1 и 4 представлен фракционный и углеводородный состав продуктов С5+, полученных при этих температурах.
Изобретение осуществляется следующим способом.
Для приготовления кобальтового катализатора с добавкой алюминия на силикагелевом носителе расчетное количество нитрата кобальта при температуре 70-80°С, перемешивая, растворяют в дистиллированной воде, после чего в пропиточный раствор вводят добавку алюминия, в виде нитрата алюминия, расчетное количество которого определяют, исходя из массового соотношения Со:Al2O3 в растворе 100:5. В пропиточный раствор погружают 50 см3 силикагелевого носителя с температурой 60-80°С, высушенного 2-4 ч при температуре 140-160°С. Пропитывание ведут 0,5 ч при температуре 70-80°С, перемешивая. Влажный катализатор сушат 2-4 ч при температуре 80-100°С, до устранения слипания гранул; термообрабатывают - сначала 2-4 ч при температуре 100-150°С, затем 4-6 ч при температуре 250-300°С. Полученный катализатор с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм и смешивают с порошками цеолита ZSM-23 в Н-форме и связующего бемита с размерами частиц менее 0,1 мм, исходя из массового соотношения кобальтовый катализатор с добавкой алюминия на силикагелевом носителе: цеолит ZSM-23 в Н-форме: связующее бемит, и добавляют раствор азотной кислоты, который готовят внесением 1-2 мл азотной кислоты концентрацией 65% в 90-100 мл дистиллированной воды (на 100 г смеси порошков), и триэтиленгликоль, исходя из объемного соотношения азотная кислота: триэтиленгликоль в смеси 1:3, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм, например, экструдером с диаметром фильеры 2 мм. Катализатор сушат 20-24 ч при температуре 20-25°С, 4-6 ч при температуре 80-100°С, 2-4 ч при температуре 100-150°С, прокаливают 4-6 ч при температуре 340-360°С; измельчают до частиц размером 2-3 мм. Активацию катализатора проводят водородом в течение 0,75-1 ч при объемной скорости газа 3000 ч-1 и температуре 380-400°С.
Для осуществления способа в качестве носителя кобальтового катализатора синтеза Фишера-Тропша с добавкой алюминия на силикагелевом носителе используют силикагель с размером гранул 2-3 мм, в частности, крупнопористый, гранулированный, марки КСКГ в соответствии с ГОСТ 3956-76.
Синтез углеводородов по методу Фишера-Тропша проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 2,0 МПа и объемной скорости газа 1000 ч-1 в интервале температур 230-260°С. Мольное соотношение СО:Н2 в синтез-газе составляло 1:2.
Пример 1 (известный).
Для приготовления кобальтового катализатора с добавкой алюминия на силикагелевом носителе 222,32 г нитрата кобальта в виде Co(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 36,58 г дистиллированной воды, после чего в пропиточный раствор вводят добавку алюминия в виде 17,78 г нитрата алюминия - Al(NO3)3⋅9H2O, и погружают 50 см силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат 4 ч при температуре 80°С, до устранения слипания гранул; термообрабатывают сначала 4 ч при температурах 100-125°С, затем 6 ч при температуре 300°С.
Затем 35 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм и смешивают с порошками 30 г цеолита ZSM-5 в Н-форме и 35 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм. Катализатор сушат 24 ч при температуре 20-25°С, 4 ч при температуре 80-100°С, 4 ч при температуре 100-150°С, прокаливают 4 ч при температуре 340-360°С, измельчают до частиц размером 2-3 мм. Активацию катализатора проводят в течение 1 ч при объемной скорости водорода 3000 ч-1 при температуре 380-400°С.
Катализатор содержит, % масс: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 35, в том числе кобальт - 7,6, добавка алюминия - 0,38, силикагелевый носитель - остальное; связующее бемит - 35; цеолит ZSM-5 в Н-форме - остальное. Степень восстановленности катализатора 51%.
Пример 2.
Для приготовления кобальтового катализатора с добавкой алюминия на силикагелевом носителе 222,32 г нитрата кобальта в виде Co(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 36,58 г дистиллированной воды, после чего в пропиточный раствор вводят добавку алюминия в виде 17,78 г нитрата алюминия - Al(NO3)3⋅9H2O, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат 4 ч при температуре 80°С, до устранения слипания гранул; термообрабатывают сначала 4 ч при температурах 100-125°С, затем 6 ч при температуре 300°С.
Затем 40 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 20 г цеолита ZSM-23 в Н-форме и 40 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм. Катализатор сушат 24 ч при температуре 20-25°С, 4 ч при температуре 80-100°С, 4 ч при температуре 100-150°С, прокаливают 4 ч при температуре 340-360°С, измельчают до частиц размером 2-3 мм. Активацию катализатора проводят в течение 1 ч при объемной скорости водорода 3000 ч-1 при температуре 380-400°С.
Катализатор содержит, % масс: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 40, в том числе кобальт - 8,7, добавка алюминия - 0,43, силикагелевый носитель - остальное; связующее бемит - 40; цеолит ZSM-23 в Н-форме - остальное. Степень восстановленности катализатора 59%.
Пример 3.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Затем 35 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 25 г цеолита ZSM-23 в Н-форме и 40 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 35, в том числе кобальт - 7,6, добавка алюминия - 0,83, силикагелевый носитель - остальное; связующее бемит - 40; цеолит ZSM-23 в Н-форме - остальное. Степень восстановленности катализатора 54%.
Пример 4.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Затем 35 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 30 г цеолита ZSM-23 в Н-форме и 35 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 35, в том числе кобальт - 7,6, добавка алюминия - 0,38, силикагелевый носитель - остальное; связующее бемит - 35; цеолит ZSM-23 в Н-форме - остальное. Степень восстановленности катализатора 53%.
Пример 5.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Затем 40 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 30 г цеолита ZSM-23 в Н-форме и 30 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 40 в том числе кобальт - 8,7, добавка алюминия - 0,43, силикагелевый носитель - остальное; связующее бемит - 30; цеолит ZSM-23 в Н-форме - остальное. Степень восстановленности катализатора 51%.
Пример 6.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Затем 35 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 35 г цеолита ZSM-23 в Н-форме и 30 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 35, в том числе кобальт - 7,6, добавка алюминия - 0,38, силикагелевый носитель - остальное; связующее бемит -30; цеолит ZSM-23 в Н-форме - остальное. Степень восстановленности катализатора 53%.
Пример 7.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Затем 30 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 35 г цеолита ZSM-23 в Н-форме и 30 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 30, в том числе кобальт - 6,5, добавка алюминия - 0,33, силикагелевый носитель - остальное; связующее бемит -35; цеолит ZSM-23 в Н-форме - остальное. Степень восстановленности катализатора 52%.
Пример 8.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Затем 30 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 40 г цеолита ZSM-23 в Н-форме и 30 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 30, в том числе кобальт - 6,5, добавка алюминия - 0,33, силикагелевый носитель - остальное; связующее бемит - 30; цеолит ZSM-23 в Н-форме - остальное. Степень восстановленности катализатора 56%.
Обобщенные сравнительные данные по оценке каталитических свойств, полученные с использованием известного и предлагаемого катализаторов в процессе синтеза углеводородов из СО и Н2, приведены в таблице 1. В виде табл. 2 для катализатора в соответствии с примером 4 представлены аналогичные данные, полученные при повышенной температуре синтеза.
Приведенные результаты показывают, что предложенные состав и способ получения позволяют вести процесс синтеза углеводородов из СО и Н2 по методу Фишера-Тропша эффективно и получить катализатор, характеризующийся высокой селективностью в отношении образования углеводородов С5+, включая углеводороды изо- и разветвленного строения, и низкой селективностью в отношении образования олефинов, в том числе, при повышенной температуре синтеза.
В таблицах 3 и 4 для катализаторов в соответствии с примерами 1 и 4 обобщены сравнительные данные о качественном и количественном составе углеводородных фракций, полученных с использованием как известного, так и предлагаемого катализатора, в том числе, при повышенной температуре синтеза.
Приведенные результаты показывают, что предложенный катализатор позволяет значительно повысить содержание синтезируемых при температурах 240 и 250°С: изопарафинов - суммарно и в составе углеводородов дизельной фракции С11-С18 в 1,7 и 1,3 раза, фракции С19+ - в 3,5 и 2,5 раза; олефинов разветвленного строения - суммарно в 1,6 и 1,8 раза и в составе углеводородов бензиновой фракции С5-С10 в 1,9 и 2,2 раза, а также снизить содержание н-олефинов более, чем вдвое, до уровня 9%. Присутствие последних в топливах. как правило, ухудшает их эксплуатационные свойства (в том числе стабильность при хранении из-за окисляемости и осмоления) и, например, по ГОСТ 32513-2013 на моторные топлива (бензин неэтилированный) объемная доля олефиновых углеводородов не должна превышать 18%.
Оптимальное содержание компонентов в катализаторе составляет соответственно, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 30-40, в том числе кобальта - 6,5-8,7, алюминия - 0,33-0,43, носитель - остальное; связующее бемит - 30-40, цеолит ZSM-23 в Н-форме - 30-40.
Введение компонентов катализатора - кобальтового катализатора с добавкой алюминия на силикагелевом носителе и цеолита ZSM-23 в Н-форме, в меньшем количестве является недостаточным для улучшения свойств катализатора. Изменение содержания компонентов - увеличение содержания кобальтового катализатора с добавкой алюминия на силикагелевом носителе и цеолита ZSM-23 в Н-форме, не обеспечивает улучшения показателей селективности и производительности катализатора в процессе получения синтетических углеводородов.
Изобретение позволяет: повысить селективность процесса получения синтетических углеводородов из СО и Н2 по методу Фишера-Тропша в отношении образования углеводородов изо- и разветвленного строения, повысив качество синтезируемых фракций, оцениваемое по содержанию изомеров и н-олефинов, а также получить эффект от ведения синтеза с высокой производительностью и селективностью при повышенной температуре и конверсии синтез-газа в продукты реакции.
название | год | авторы | номер документа |
---|---|---|---|
Катализатор для синтеза углеводородов по методу Фишера-Тропша и способ его получения | 2016 |
|
RU2639155C1 |
Катализатор для получения синтетического низкозастывающего дизельного топлива и способ его приготовления | 2018 |
|
RU2698705C1 |
КАТАЛИЗАТОР ДЛЯ СИНТЕЗА УГЛЕВОДОРОДОВ ИЗ CO И H И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2021 |
|
RU2775691C1 |
КАТАЛИЗАТОР ДЛЯ СИНТЕЗА УГЛЕВОДОРОДОВ ИЗ СО И Н И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2021 |
|
RU2792823C1 |
Катализатор для получения синтетических углеводородов из CO и H и способ его приготовления | 2020 |
|
RU2738366C1 |
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ ЖИДКИХ ТОПЛИВ ИЗ УГЛЕВОДОРОДНЫХ ГАЗОВ ПО МЕТОДУ ФИШЕРА-ТРОПША И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2444557C1 |
КАТАЛИЗАТОР ДЛЯ ПРЯМОГО ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОЙ НЕФТИ, ОБОГАЩЕННОЙ ИЗОПАРАФИНАМИ, И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2012 |
|
RU2524217C2 |
КАТАЛИЗАТОР СИНТЕЗА ФИШЕРА-ТРОПША И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2011 |
|
RU2455066C1 |
МЕЗОПОРИСТЫЙ БИМЕТАЛЛИЧЕСКИЙ КАТАЛИЗАТОР СИНТЕЗА ФИШЕРА-ТРОПША | 2022 |
|
RU2799070C1 |
СПОСОБ ПОЛУЧЕНИЯ КОБАЛЬТОВОГО КАТАЛИЗАТОРА СИНТЕЗА ЖИДКИХ УГЛЕВОДОРОДОВ ПО МЕТОДУ ФИШЕРА-ТРОПША | 2012 |
|
RU2493913C1 |
Изобретение относится к химической промышленности, в том числе нефтехимии, газохимии, углехимии и может быть использовано при получении катализаторов для синтеза углеводородов из СО и Н2 по методу Фишера-Тропша. Описан катализатор для синтеза углеводородов из СО и Н2 по методу Фишера-Тропша, селективный в отношении образования углеводородов изо- и разветвленного строения, включающий кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит в H-форме и связующее бемит, содержащий цеолит ZSM-23 в H-форме, при следующем содержании компонентов, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе – 30-40; связующее бемит – 30-40; цеолит ZSM-23 в Н-форме – 30-40; причем кобальтовый катализатор с добавкой алюминия на силикагелевом носителе содержит, % масс.: кобальт – 6,5-8,7; добавка алюминия – 0,33-0,43; силикагелевый носитель – остальное. Способ получения вышеуказанного катализатора включает предварительную подготовку носителя, пропитку носителя водным раствором нитрата кобальта, термообработку и активацию катализатора. Технический результат - создание кобальтового катализатора для синтеза углеводородов из СО и Н2 по методу Фишера-Тропша с повышенными каталитическими свойствами в отношении образования углеводородов изо- и разветвленного строения и невысоким содержанием олефинов в составе углеводородов дизельной фракции С11-C18; получение эффекта от ведения синтеза с высокой производительностью и селективностью при повышенной температуре и конверсии синтез-газа в продукты реакции. 2 н.п. ф-лы, 4 табл., 8 пр.
1. Катализатор для синтеза углеводородов из СО и Н2 по методу Фишера-Тропша, селективный в отношении образования углеводородов изо- и разветвленного строения, включающий кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит в H-форме и связующее бемит, отличающийся тем, что содержит цеолит ZSM-23 в H-форме, при следующем содержании компонентов, % масс.:
причем кобальтовый катализатор с добавкой алюминия на силикагелевом носителе содержит, % масс.:
2. Способ получения катализатора по п. 1, селективного в отношении образования углеводородов изо- и разветвленного строения, содержащий активные компоненты кобальт, добавку алюминия и силикагелевый носитель, включающий предварительную подготовку носителя, пропитку носителя водным раствором нитрата кобальта, термообработку и активацию катализатора, при чем предварительную подготовку носителя проводят в режиме сушки 2-4 ч при температуре 140-160°С, на стадии пропитки носителя в водный раствор нитрата кобальта концентрацией 35-55 % масс. вводят добавку алюминия в виде нитрата алюминия при массовом соотношении Co:Al2O3 в пропиточном растворе 100:5, термообработка катализатора включает сушку - сначала 2-4 ч при температурах 80-100°С, затем 2-4 ч при температуре 100-150°С, и прокаливание 4-6 ч при температуре 250-300°С, активацию катализатора проводят водородом в течение 0,75-1 ч при температуре 380-400°С, отличающийся тем, что кобальтовый катализатор с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм, смешивают с порошками цеолита ZSM-23 в Н-форме и связующего бемита с размерами частиц менее 0,1 мм, исходя из массового соотношения компонентов кобальтовый катализатор с добавкой алюминия на силикагелевом носителе : цеолит ZSM-23 в Н-форме : связующее бемит, и добавляют раствор азотной кислоты, который готовят внесением 1-2 мл азотной кислоты концентрацией 65% в 90-100 мл дистиллированной воды на 100 г смеси порошков, и триэтиленгликоль, исходя из объемного соотношения азотная кислота : триэтиленгликоль в смеси 1:3, перемешивают до получения однородной массы, при постоянном перемешивании массу нагревают и выдерживают при температуре 60-70°С до остаточной влажности 70 % масс., формуют гранулы катализатора диаметром менее 2 мм, сушат 20-24 ч при температуре 20-25°С, 4-6 ч при температуре 80-100°С, 2-4 ч при температуре 100-150°С, прокаливают 4-6 ч при температуре 340-360°С, измельчают до частиц размером 2-3 мм, а затем проводят активацию водородом при объемной скорости газа 3000 ч-1.
Катализатор для синтеза углеводородов по методу Фишера-Тропша и способ его получения | 2016 |
|
RU2639155C1 |
Многоступенчатая активно-реактивная турбина | 1924 |
|
SU2013A1 |
Д.Н | |||
ГЕРАСИМОВ и др | |||
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб | 1921 |
|
SU23A1 |
Многоступенчатая активно-реактивная турбина | 1924 |
|
SU2013A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Способ приготовления лака | 1924 |
|
SU2011A1 |
ПОЛУЧЕНИЕ РАЗВЕТВЛЕННЫХ АЛИФАТИЧЕСКИХ СПИРТОВ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИЧЕСКОГО ПОТОКА УСТАНОВКИ ДЕГИДРИРОВАНИЯ-ИЗОМЕРИЗАЦИИ | 2004 |
|
RU2349574C2 |
КАТАЛИЗАТОР ДЛЯ СИНТЕЗА УГЛЕВОДОРОДОВ ИЗ CO И H И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2021 |
|
RU2775691C1 |
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ АВИАЦИОННЫХ ТОПЛИВ ИЗ УГЛЕВОДОРОДОВ, ПОЛУЧЕННЫХ ПО МЕТОДУ ФИШЕРА-ТРОПША, И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2473664C1 |
US 4076842 A1, |
Авторы
Даты
2024-06-28—Публикация
2022-12-23—Подача