Изобретение относится к литейному производству и может быть использовано при отливке блюмовых и слябовых металлических заготовок.
Целью изобретения является повышение качества отливаемых заготовок за счет однородности структуры и химического состава путем интенсивного перемешивания и более равномерного охлаждения при кристаллизации.
На фиг. 1 показана схема устройства для реализации предлагаемого способа; на фиг. 2 - спектр частот рабочих гармоник напряжения одной фазы преобразователя формы напряжения; на фиг. 3 - схема распределения скоростей слоев расплава металла по сечению заготовки. На фиг. 1 обозначено: 1 - преобразователь формы напряжения, посредством которого формируется трехфазное периодическое несинусоидальное напряжение ( ∩ ) с требуемым составом рабочих гармоник; 2 - индуктор (линейный двигатель), предназначенный своим электромагнитным полем в тигле 3 приводить в движение расплав металла 4 в рабочей зоне индуктора. На фиг. 2 показаны амплитуды Umk и частоты ω k рабочих гармоник периодического несинусоидального напряжения ∩ . На фиг. 3 показан график линейных скоростей v движения расплава металла 4 в тигле 3 в рабочей зоне индуктора. Способ реализуется следующим образом.
При подаче синусоидального трехфазного напряжения, на вход♂≈преобразователя 1 (см. фиг. 1) на выходе его формируется трехфазное периодическое несинусоидальное напряжение ∩ требуемого спектра рабочих гармоник (см. фиг. 2). Напряжение рабочих гармоник от преобразователя 1 передается индуктору 2. Интенсификация процесса послойного циркуляционного движения металла 4 в рабочей зоне индуктора, расположенного вдоль или поперек направления движения слитка, достигается за счет приложенного напряжения в предлагаемом способе благодаря созданию большей разницы движущих моментов соседних слоев.
За счет подачи к индуктору несинусоидального периодического напряжения, в спектре которого имеются рабочие гармоники с частотами, равными частоте сети и ниже с возрастающими с ростом частоты амплитудами прямого (высокой частоты) и обратного (низкой частоты) следования фаз, ближние к индикатору слои расплава металла подвергаются более интенсивному воздействию суммарного магнитного поля от разных частот, чем средние. Кроме того, в дальних слоях (см. фиг. 3) под действием гармоник поля обратного следования фаз развиваются электромагнитные объемные силы противоположного направления, которые приводят в движение эти слои в обратном движению ближних слоев направлении. Таким образом, создается послойное циркуляционное движение металла и интенсивное перемешивание его. При этом вследствие большей разницы движущих моментов соседних слоев металла происходит более интенсивное разрушение растущих кристаллов и перенос их во внутренние слои расплава. За счет сужения переходной зоны между расплавом и фронтом кристаллизации происходит интенсивный отвод тепла от жидкой фазы расплава металла, вследствие этого температура расплава равномерно понижается, при этом ускоряется процесс кристаллизации, что влечет за собой получение мелкозернистой структуры. Так как процесс перемешивания идет по всему объему и при меньших, чем в известных способах скоростях, белые полосы при перемешивании не образуются. В результате перемешивания контрольных образцов предлагаемым способом удается ликвидировать усадочные дефекты, улучшить механические свойства и повысить химическую однородность металла в объеме слитка.
Предложенный способ перемешивания металла осуществляли на лабораторной установке. Перемешивали сплав алюминия АЛ-3 в прямоугольном тигле сечением 120х150 мм, высотой 300 мм, температура заливки расплава 750оС. Тигель выполнен из нержавеющей стали толщиной 1,2 мм, покрыт внутри футеровкой толщиной 1,3 см. Индуктор располагали на широкой грани тигля так, чтобы бегущее магнитное поле было направлено со стороны лежащей ближе к индуктору от свободной поверхности расплава вниз. На преобразователь 1 формы напряжения подавали трехфазное синусоидальное напряжение частотой 50 Гц и величиной фазного напряжения равной 220 В. Использовался линейный индуктор 2 (двигатель) с одной парой полюсов, на который подавалось трехфазное несинусоидальное периодическое напряжение с частотами спектра рабочих гармоник равными ω2= 89,76 с-1, ω 4= 179,42 с-1, ω7= 314,16 c-1 и соответственно амплитудами Vm2= 80 В, Vm4= 170 В, Vm7= 295 В. Скорости потоков замерялись на сплаве Руда трубкою Пито-Прандтля. Установлено циркуляционное послойное движение жидкого металла и отмечены скачки давления, что свидетельствует о турбулентных возможностях движущихся слоев.
Интенсификация процесса перемешивания металла по всему объему рабочего пространства индуктора получена в опытах за счет большей разницы движущих моментов, воздействующих на соседние слои металла. А также за счет движения расплава под действием объемных электромагнитных сил, от гармоник обратного следования фаз, в противоположном движению ближних к индуктору слоев направлении (см. фиг. 1,3).
Вследствие большей разницы движущих моментов соседних слоев металла происходило более интенсивное разрушение растущих кристаллов и перенос их во внутренние слои расплава. За счет сужения переходной зоны между расплавом и фронтом кристаллизации происходит интенсивный отвод тепла от жидкой фазы расплава металла, вследствие этого температура расплава равномерно понижается, при этом ускоряется процесс кристаллизации, что влечет за собой получение мелкозернистой структуры. На шлифах, полученных из отлитой заготовки, отмечено увеличение зоны мелких равноосных кристаллов на 35-40% по сравнению с контрольным образцом, кристаллизовавшимся в условиях бегущего магнитного поля с частотой 50 Гц (прототип).
В результате перемешивания расплава металла по всему объему в предложенном способе улучшилось распределение химических элементов по объему слитка, о чем свидетельствует отсутствие белых полос на шлифах.
В процессе экспериментальных исследований было также установлено, что вследствие отсутствия реверса в предлагаемом способе расход энергии на перемешивание уменьшился на 32% по сравнению с процессом перемешивания при частоте реверса 20 раз в минуту и синусоидальном источнике питания индуктора.
Образование бегущего магнитного поля периодическим несинусоидальным трехфазным напряжением с составом рабочих гармоник прямого и обратного следования фаз с возрастающими с ростом частоты амплитудами позволило за счет получения однородной структуры и однородного химического состава, интенсивного послойного перемешивания и более равномерного охлаждения при кристаллизации расплава повысить качество отливаемых заготовок расплава и сократить расход энергии на перемешивание на 32% .
(56) Авторское свидетельство СССР N 503634, кл. В 22 D 27/02, 1971.
название | год | авторы | номер документа |
---|---|---|---|
Способ перемешивания расплава металла при кристаллизации | 1985 |
|
SU1297988A1 |
Способ индукционного нагрева заготовок | 1986 |
|
SU1361187A1 |
СПОСОБ ПЕРЕМЕШИВАНИЯ РАСПЛАВА МЕТАЛЛА И ЭЛЕКТРОМАГНИТНЫЙ ПЕРЕМЕШИВАТЕЛЬ ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) | 2018 |
|
RU2708036C1 |
СПОСОБ ДЛЯ НЕПРЕРЫВНОЙ И ПОЛУНЕПРЕРЫВНОЙ РАЗЛИВКИ АЛЮМИНИЕВЫХ СПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2457064C1 |
ИНДУКЦИОННАЯ УСТАНОВКА ДЛЯ ПЕРЕМЕШИВАНИЯ ЖИДКИХ МЕТАЛЛОВ | 2012 |
|
RU2524463C2 |
Устройство для перемешивания жидкого металла | 1989 |
|
SU1703245A1 |
Способ перемешивания металла в индукционной тигельной печи | 2021 |
|
RU2779469C1 |
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ АРСЕНИДА ГАЛЛИЯ МЕТОДОМ ЧОХРАЛЬСКОГО | 2021 |
|
RU2785892C1 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ И ПОДГОТОВКИ ПРОБЫ ДЛЯ ИССЛЕДОВАНИЯ ЭЛЕКТРОПРОВОДНОГО РАСПЛАВА | 2008 |
|
RU2389009C2 |
СПОСОБ РЕГУЛИРОВАНИЯ РЕЖИМА ЭЛЕКТРОМАГНИТНОГО ПЕРЕМЕШИВАНИЯ ЖИДКОЙ ФАЗЫ СЛИТКА В МАШИНЕ НЕПРЕРЫВНОГО ЛИТЬЯ СЛЯБОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2464123C1 |
Использование: в литейном производстве при отливке блюмовых и слябовых металлических заготовок для повышения качества отливаемых заготовок за счет однородности структуры и химического состава, что достигается путем образования послойных циркуляционных движений потоков расплава металла, интенсивного перемешивания и более равномерного охлаждения при кристаллизации. Сущность изобретения: поставленная цель достигается за счет бегущего магнитного поля, которое образуют периодическим несинусоидальным трехфазным напряжением, спектр которого содержит гармоники симметричных трехфазных систем напряжений прямой и обратной последовательности фаз с возрастающими с ростом частоты амплитудами. 3 ил.
СПОСОБ ПЕРЕМЕШИВАНИЯ РАСПЛАВА МЕТАЛЛА, включающий движение расплава путем воздействия на расплав бегущим магнитным полем, образованным периодическим несинусоидальным трехфазным напряжением, спектр которого содержит гармоники симметричных трехфазных систем напряжений прямой последовательности фаз, отличающийся тем, что, с целью повышения качества отливаемых заготовок за счет однородности структуры и химического состава путем интенсивного перемешивания и более равномерного охлаждения при кристаллизации, ведут одновременно согласное и встречно-параллельное движение слоев расплава, при этом бегущее магнитное поле с периодическим несинусоидальным трехфазным напряжением используют со спектром, содержащим одновременно гармоники симметричных трехфазных систем напряжений прямой и дополнительно обратной последовательности фаз с возрастающими с ростом частоты амплитудами.
Авторы
Даты
1994-02-15—Публикация
1988-01-04—Подача