Изобретение относится к способам очистки промвыбросов от токсичных компонентов, в частности очистки газовых выбросов аффинажа платиновых металлов от оксидов азота.
Известен способ очистки отходящих газов от оксидов азота [1] , по которому газ, содержащий оксиды азота, смешивают с аммиаком и обрабатывают в абсорбционной колонне раствором пентацианоакваферрата (П) натрия при pH раствора, равном 8-10. В этом способе использование аммиака очень эффективно: достигается высокая степень очистки (более 98-99% ).
Недостатками способа является то, что оксиды азота восстанавливаются до элементного азота и безвозвратно теряются, нет возможности создать рецикл реактивов, способ требует относительно высоких затрат.
Известен способ очистки отходящих газов от оксидов азота абсорбцией водным раствором гидроксида натрия с получением смеси солей [2] . Этот способ позволяет не только очистить газы от оксидов азота, но и утилизировать их в виде полезных соединений. Таким образом, вовлекаются в оборот газовые отходы производства и повышаются его технико-экономические показатели.
Однако этот способ характеризуется низкой степенью утилизации оксидов азота, что объясняется следующими причинами. Во-первых, скорость абсорбции и соответственно эффективность абсорбции существенно зависят от концентрации оксидов азота и щелочи в растворе. Во-вторых, монооксид азота практически не взаимодействует с водой и щелочью, а диоксид азота реагирует следующим образом
3NO2 + H2O = 2HNO3 + NO (1)
2NO2 + 2NaOH = NaNO3 +
+ NaNO3 + H2O (2) В-третьих, из газовой смеси, в которой содержание NO преобладает над количеством NO2, абсорбируется только их эквимолярная смесь в виде N2O3
NO + NO2 + N2O3 (3)
N2O3 + 2NaOH = 2NaNO3. H2O (4)
N2O3 + H2O = 2 HNO2 (5)
3HNO2 = HNO3 + 2NO + H2O (6)
Вследствие разницы в скоростях взаимодействия с щелочью NO2 и N2O3 и наличия в отходящих газах как первичного, так и вторичного NO, образованного по реакциям (1) и (6), щелочной абсорбцией удается снизить содержание оксидов азота в отходящих газах до 0,12% . В то время как в способах очистки газов от оксидов азота, основанных на их восстановлении до элементного азота, удается достичь остаточного содержания оксидов азота на уровне 150-200 ppm (0,015-0,020% ). Несмотря на это очистка газов щелочной абсорбцией перспективна применительно к производству платиновых металлов, поскольку продукты очистки (утилизации) - азотсодержащие соли являются потребляемыми производством реактивами.
Известен способ очистки газовых выбросов от оксидов азота [3] путем обработки газов раствором щелочи с предварительной обработкой их щелочным раствором хлорсодержащего окислителя - гипохлорида натрия. Степень очистки газов от оксидов азота составляет 93,1-98,7% . Способ принят за прототип.
Недостатком этого способа является низкая эффективность утилизации из-за необходимости использования специального реагента - гипохлорида натрия и отсутствия обезвреживания других токсичных компонентов газовых выбросов.
Целью изобретения является повышение эффективности утилизации и одновременное обезвреживание отходящих газов процесса гидрохлорирования концентрата платиновых металлов.
Предлагаемый способ позволяет
достичь высокой степени очистки отходящих газов от оксидов азота;
повысить степень утилизации оксидов азота при использовании одной стадии абсорбции на 17% (при трех стадиях абсорбции на 1,5% ), что во многих случаях позволяет отказаться от многостадийной очистки и промежуточного окисления монооксида азота;
создать рецикловую технологию, т. е. вовлечь в производство газообразные азот- и хлорсодержащие отходы аффинажного производства, и в целом сократить потребление производством азотсодержащих реактивов.
Указанная цель достигается тем, что в известном способе очистки отходящих газов от оксидов азота, включающем предварительную обработку выбросов хлорсодержащим окислителем с последующим контактом с водным поглотителем - раствором гидроксида натрия, отходящие газы, содержащие оксиды азота, предварительно смешивают с промгазами, содержащими хлор, например от процессов гидрохлорирования ломов или других концентратов платиновых металлов, при мольном соотношении NO: Cl2 = 1: (0,45-0,50), и направляют на щелочную абсорбцию.
Сущность способа заключается в том, что монооксид азота легко вступает во взаимодействие с газообразным хлором
2NO + Cl2 = 2NOCl (7) Продукт их взаимодействия - хлорид нитрозина при контакте с водой быстро гидролизуется
NOCl + H2O = HNO2 + H+ + Cl- (8) При взаимодействии с щелочью он образует смесь хлорида и нитрида натрия
NOCl + 2NaOH = NaCl +
+ NaNO2 + H2O (9)
Таким образом, в предлагаемом способе монооксид азота превращается из практически инертного к щелочи в весьма активное и легко взаимодействующее с NaOH соединение, утилизируемое известным путем.
Изобретение иллюстрируется следующими примерами.
П р и м е р 1. Поток газа, поступающего со скоростью 60 л/ч, содержащий 10 об. % . NO и 6,5 об. % NO2, смешивали с промгазами, содержащими 50 об. % Cl2 в соотношении NO: Cl2 = 1: 0,45, и пропускали через абсорбционную колонку, заполненную стеклянными шарами в течение 20 мин. Через колонку непрерывно прокачивали 2,5 М раствор гидроксида натрия. За это время с отходящими газами в абсорбер поступило 2,063 г связанного азота. Раствор после абсорбции содержал 40,01 г гидроксида натрия, 2,94 г нитрата натрия и 6,97 г нитрита натрия (суммарное содержание азота 1,90 г), т. е. извлечение из газа в щелочной раствор (по азоту) составило 92,1% . При пропускании газа через три абсорбционные колонки извлечение оксидов азота составило 99,8% . Хлор на выходе не обнаружен.
П р и м е р 2. Поток газа (состав и скорость по примеру 1) смешивали с промгазом, содержащим 50 об. % хлора в соотношении NO: Cl2 = 1: 0,50, и в условиях примера 1 пропускали через абсорбционную колонку. Раствор после абсорбции содержал 38,16 г гидроксида натрия, 3,18 г нитрата натрия и 6,82 г нитрита натрия. Суммарное содержание связанного азота составило 1,91 г, т. е. извлечение из газа в щелочной раствор (по азоту) составило 92,5% . При пропускании газа через три абсорбера извлечение оксидов азота составило 99,9% . Хлор на выходе не обнаружен. (56) 1. Авторское свидетельство СССР N 1105530, кл. B 01 D 53/36, 1984.
2. Харлампович Г. Д. и Кудряшова Р. И. Безотходные технологические процессы в химической промышленности. М. : Химия, 1978, с. 280.
3. Гладкий А. В. и др. Очистка газовых выбросов от оксидов азота. М. : ЦИНТИХНЕФТЕМАШ, 1989, с. 11.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ АММОНИЙНО-НАТРИЕВЫХ НИТРИТНЫХ СОЛЕЙ РОДИЯ С ВОСПРОИЗВОДСТВОМ НИТРИТА НАТРИЯ | 2000 |
|
RU2190674C2 |
СПОСОБ ПОЛУЧЕНИЯ НИТРАТА НАТРИЯ | 1990 |
|
RU2027668C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ КОНЦЕНТРАТА ПЫЛИ АФФИНАЖНОГО ПРОИЗВОДСТВА | 1992 |
|
RU2006508C1 |
СПОСОБ ПОЛУЧЕНИЯ АФФИНИРОВАННОГО СЕРЕБРА ИЗ ПРОМПРОДУКТОВ | 1993 |
|
RU2049131C1 |
СПОСОБ УНИЧТОЖЕНИЯ И ОБЕЗВРЕЖИВАНИЯ ТОКСИЧНЫХ ОРГАНИЧЕСКИХ ОТХОДОВ | 2011 |
|
RU2480260C2 |
СПОСОБ КОМПЛЕКСНОЙ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ | 2018 |
|
RU2676642C1 |
УДАЛЕНИЕ ДИОКСИДА УГЛЕРОДА ИЗ ПОТОКОВ ОТХОДОВ ПУТЕМ СОВМЕСТНОГО ПОЛУЧЕНИЯ КАРБОНАТНЫХ И/ИЛИ БИКАРБОНАТНЫХ МИНЕРАЛОВ | 2005 |
|
RU2420345C2 |
УДАЛЕНИЕ ДИОКСИДА УГЛЕРОДА ИЗ ПОТОКОВ ОТХОДОВ ПУТЕМ СОВМЕСТНОГО ПОЛУЧЕНИЯ КАРБОНАТНЫХ И/ИЛИ БИКАРБОНАТНЫХ МИНЕРАЛОВ | 2005 |
|
RU2569093C2 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ НИКЕЛЬ-КОБАЛЬТОВОГО СЫРЬЯ | 2009 |
|
RU2393251C1 |
ХИМИЧЕСКИЙ ПОГЛОТИТЕЛЬ ДЛЯ ОБЕЗВРЕЖИВАНИЯ ГАЛОГЕНСОДЕРЖАЩИХ И КИСЛЫХ ГАЗОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 2004 |
|
RU2283176C2 |
Использование: очистка газовых выбросов аффинажа платиновых металлов от NOx. Сущность изобретения: газовые выбросы обрабатывают хлорсодержащим окислителем. В качестве окислителя используют промышленные газы, содержащие хлор, преимущественно отходящие газы процесса гидрохлорирования концентратов платиновых металлов. Соотношение NO:Cl2 = 1 : (0,45 - 0,050). Затем газовые выбросы контактируют с водным раствором NaOH. Раствор после контактирования содержит NaOH, NaNO3 и NaNO2 и может использоваться в основном процессе. Степень очистки от NOx составляет 92,5% .
СПОСОБ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ МОНООКСИДА АЗОТА путем предварительной обработки выбросов хлорсодержащим окислителем с последующим контактом с водным поглотителем - раствором гидроксида натрия, отличающийся тем, что, с целью повышения эффективности процесса утилизации и одновременного обезвреживания отходящих газов процесса гидрохлорирования концентратов платиновых металлов, в качестве хлорсодержащего окислителя используют промышленные газы, содержащие хлор, преимущественно отходящие газы процесса гидрохлорирования концентратов платиновых металлов, а предварительную обработку ведут при молярном соотношении монооксида азота и хлора 1: 0,45 - 0,50.
Авторы
Даты
1994-02-28—Публикация
1990-05-03—Подача