КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ Российский патент 1994 года по МПК B01J23/89 B01D53/36 

Описание патента на изобретение RU2010597C1

Изобретение относится к катализаторам для глубокого окисления газообразного топлива и может быть использовано в каталитических обогревателях, работающих на пропан-бутановой смеси или других углеводородах, которые необходимы в ряде отраслей народного хозяйства, а также для обогрева производственных, бытовых и жилых помещений.

Для глубокого окисления углеводородов служат различные катализаторы - металлы, простые и сложные оксидные системы. Металлическими катализаторами глубокого окисления углеводородов, как правило, являются металлы платиновой группы [1] , нанесенные на различные носители: оксиды алюминия и кремния, термостойкие волокнистые материалы. Надо отметить, что по активности, универсальности действия, обеспечивающей надежность и полноту окисления, а также значительно более низкую температуру зажигания платиновые катализаторы бесспорно лучше. К недостаткам можно отнести нестойкость к ядам и самое главное платина дефицитна и очень дорога. Тем не менее платина или ее аналоги входят в состав катализаторов, предназначенных для эксплуатации в бытовых или жилых помещениях, и ее содержание составляет 0,05-7 мас. % [2-5] .

Известно, что из систем переходных металлов наиболее активными катализаторами глубокого окисления являются смешанные оксидные соединения типа шпинелей (кобальтиты, хромиты, ферриты) Основной их недостаток - это высокая температура зажигания, что делает невозможным их использование в обогревающих устройствах, предназначенных для бытовых и жилых помещений.

Наиболее распространенными способами приготовления катализаторов является соосаждение активных компонентов или нанесение их на инертный носитель [6,7] .

Известен способ, при котором гранулы окиси алюминия пропитывают раствором бихромата меди с последующей сушкой и прокалкой при 700оС [8] . Недостатками данного способа являются недостаточно прочное сцепление частиц активной массы катализатора с носителем и невозможность придания катализатору определенной формы, что исключает его использование в каталитических источниках тепла.

Наиболее близким по технической сущности и достигаемому результату является кобальтхромовожелезный катализатор на носителе из кремнеземного волокна для глубокого окисления углеводородов [9] .

Оксидный кобальтхромовожелезный катализатор готовят однократной пропиткой при комнатной температуре кремнеземного носителя водным раствором, содержащим соли всех элементов, которые входят в катализатор. Предварительно определяют влагоемкость кремнеземного носителя в расчете на 1 г плиты. Взвешенное количество плиты погружают в раствор, количество которого определяется влагоемкостью этой плиты, содержащий активные компоненты катализатора в количествах, обеспечивающих требуемый состав катализатора. После впитывания всего раствора кремнеземную плиту сушат при 110оС в течение 5-6 ч при быстром отводе выделяющихся паров воды. После сушки катализатор прокаливают при 550-600оС в течение 1 ч. При интенсивном отводе продуктов разложения в струе очищенного нагретого воздуха.

Получают катализатор, содержащий : окиси хрома, кобальта, железа, нанесенные на кремнеземный носитель, соответственно, в мас. % : Cr2O3 5-6; Co3O4 2-12; Fe2O3 5-15.

Недостатками данного катализатора являются:
длительное время зажигания катализатора, которое составляет более 10 мин, т. е. в течение этого времени конверсия углеводородного топлива составляет в среднем 50% , а это в свою очередь не позволяет использовать данный катализатор в обогревателях для бытовых и жилых помещений;
в ходе его приготовления образуется значительное количество оксидов азота, выделяющихся в атмосферу. Так, при приготовлении 1 кг готового катализатора выделяется 155 л газообразных оксидов азота, являющихся токсичными продуктами.

Целью изобретения является повышение активности катализатора, в результате чего время розжига должно составлять не более 1 мин, а также улучшение условий труда и охраны окружающей среды за счет исключения токсичных примесей в отходящих газах.

Поставленная цель достигается тем, что катализатор для глубокого окисления углеводородов, включающий окислы хрома и кобальта на волокнистом носителе, дополнительно содержит платину и оксид меди при следующем соотношении компонентов, мас. % : оксид хрома 8-11; оксид кобальта 4-8; оксид меди 2-4; платина 0,01; носитель остальное.

Оксидный кобальтмеднохромовый катализатор готовят однократной пропиткой по избытку при комнатной температуре волокнистого носителя водным раствором, содержащим соли меди, кобальта и хрома. Для удаления избыточного раствора катализаторную плиту отжимают с помощью валиков. Далее катализатор сушат при 25+5оС в течение 8-12 ч. При увеличении температуры сушки и организации интенсивного отсоса воздуха происходит образование жесткой корочки на поверхности катализатора. Далее на обе поверхности катализатора орошением наносят раствор платинохлористоводородной кислоты и еще раз сушат при 25+ 5оС 4-6 ч. Затем катализатор прокаливают при 550-600оС в течение 4 часов с образованием смешанной нестехиометрической шпинели на основе хромита кобальта и хромита меди.

Испытания катализаторов проводили как в лабораторных условиях на испытательном стенде, так и в реальных условиях при работе катализатора в каталитических обогревателях различных конструкций. При испытаниях измеряли температуру начала реакции, время розжига, максимальную температуру на поверхности катализатора при работе обогревателя и процесс конверсии газообразного топлива. Отходящие газы периодически анализировали на содержание диоксида и оксида углерода хроматографическим методом.

П р и м е р 1. Муллито-кремнеземнистый фетр в виде мата, толщиной 15 мм и массой 80 г пропитывают при комнатной температуре 450 мл раствора, содержащего 17,6 г кобальта углекислого основного, 4,5 г меди углекислой основной, трехоксида хрома 25 г. Далее катализатор отжимают на валиках и сушат при температуре 25+5оС в течение 12 ч. На высушенный катализатор орошением наносят 8 мл 1% раствора платинохлористоводородной кислоты. Катализатор вновь сушат и затем прокаливают при 550оС в течение 4 ч.

Полученный катализатор имеет состав, мас. % : оксид кобальта 8; оксид меди 4; оксид хрома (Cr2O3) 10; платина 0,006, остальное носитель. По данным рентгенофазного анализа катализатор имеет структуру смешанной кобальтхромовой и меднохромовой шпинели.

П р и м е р 2. Маты из супертонкого стеклянного волокна (МБ-СТБ) пропитывают при комнатной температуре 400 мл раствора, содержащего 17,6 г кобальта углекислого основного, 4,5 меди углекислой основной, 23 г трехоксида хрома. После пропитки катализаторную плиту тщательно отжимают и сушат при 25+5оС в течение 8-12 ч. Далее на катализатор орошение наносят 1,5 мл 1% -ного раствора платинохлористоводородной кислоты и вновь сушат при 25+5оС, 4-6 ч и прокаливают при 550оС 4 ч.

Полученный катализатор имеет следующий состав, мас. % : оксид хрома 11; оксид кобальта 6; оксид меди 3, платина 0,01, остальное носитель. По данным рентгенофазного анализа катализатор имеет структуру смешанной шпинели.

П р и м е р 3. Маты МБ-СТВ, пропитывают раствором, содержащим углекислые соли 11,2 г кобальта, 2,8 г меди, 16 г оксида хрома. Орошением наносят 2 мл 1% -ного раствора платинохлористоводородной кислоты. Полученный катализатор имеет следующий состав, мас. % : оксид хрома 8; оксид кобальта 4; оксид меди 2; платина 0,008; остальное носитель. Данные работы катализаторов приведены в табл. 1.

П р и м е р 4 (для сравнения, известный способ). Образец катализатора приготовлен в соответствии с (9). Кремнеземную плиту, массой 13,0 г пропитывают 143 мл водного раствора, содержащего 5,57 г азотнокислого кобальта, 7,26 г азотнокислого железа и 5,32 г азотнокислого хрома. Затем катализатор сушат при 110оС в течение 5-6 ч и прокаливают при 600оС в течение 1 ч в струе нагретого воздуха (состав 1). Полученный катализатор содержит, мас. % : оксид кобальта 8,5; оксид железа 8,5; оксид хрома 6,0; остальное кремнеземный носитель.

П р и м е р 5 (для сравнения, известный способ). Образец катализатора приготовлен в соответствии с (9). Кремнеземную плиту массой 13,0 г пропитывают 143 мл водного раствора, содержащего 7,86 г азотнокислого кобальта, 4,27 г азотнокислого железа, 5,33 г азотнокислого хрома. Затем сушат и прокаливают согласно примеру 4. Состав полученного катализатора, мас. % оксид кобальта 12,2; оксид железа 5,0; оксид хрома 6,0; кремнеземный носитель остальное (состав 2).

Приготовленные катализаторы испытывали на испытательном стенде при окислении газообразного топлива. Полученные результаты представлены в табл. 2 для сравнения с образцами известных катализаторов.

(56) Trim D. L. Catalytic Combustion-Applied Catalysis, 1983, v. 7, р. 249-282.

Патент 659005, Швейцария, кл. В 01 J 23/42, опублик. 1986.

Патент N 2821510, США, кл. В 01 J, опублик, 1958.

Заявка РСТ 83/01017, кл. В 01 J 35/00, опублик. 1982.

Патент 3956185, США, В 01 J 29/06, опублик. 1983.

Каденаци Б. М. , Шибанова М. Д. /В кн. "Глубокое каталитическое окисления углеводородов", (серия "Проблемы кинетики и катализа" т. 18), М. : Наука, 1981, 200 с.

Алхазов Т. Г. Марголис Л. Я. - Глубокое каталитическое окисления органических веществ. М. : Химия, 1985, с. 186.

Авторское свидетельство СССР N 533391, кл. В 01 J 37/00, опубл. 1976.

Авторское свидетельство СССР N 760993, кл. В 01 J 23/86, опублик. 1980.

Похожие патенты RU2010597C1

название год авторы номер документа
КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ 1992
  • Зайниева И.Ж.
  • Кириченко О.А.
  • Чистяченко Т.В.
  • Исмагилов З.Р.
RU2054318C1
КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ 1994
  • Сазонов В.А.
  • Прокудина Н.А.
  • Исмагилов З.Р.
RU2080920C1
КАТАЛИЗАТОР ДЛЯ БЕСПЛАМЕННОГО СЖИГАНИЯ ПРИРОДНОГО ГАЗА 1995
  • Исмагилов З.Р.
  • Прокудина Н.А.
  • Сазонов В.А.
RU2086298C1
КАТАЛИЗАТОР (ЕГО ВАРИАНТЫ) И ПРОЦЕСС ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА 1997
  • Павлова С.Н.
  • Сапутина Н.Ф.
  • Садыков В.А.
  • Бунина Р.В.
  • Исупов В.П.
RU2144844C1
КАТАЛИЗАТОР ОКИСЛЕНИЯ НА ОСНОВЕ ОКСИДОВ СО СТРУКТУРОЙ ПЕРОВСКИТА 1994
  • Тихов С.Ф.
  • Садыков В.А.
  • Кимхай О.Н.
  • Розовский А.Я.
  • Лунин В.В.
  • Третьяков В.Ф.
RU2063267C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ПАРОВОЙ КОНВЕРСИЕЙ УГЛЕВОДОРОДОВ 2001
  • Иванова А.С.
  • Золотарский И.А.
  • Боброва И.И.
  • Смирнов Е.И.
  • Кузьмин В.А.
  • Носков А.С.
  • Пармон В.Н.
RU2185239C1
КАТАЛИЗАТОР ОКИСЛЕНИЯ ОКСИДА УГЛЕРОДА И УГЛЕВОДОРОДОВ (ВАРИАНТЫ) 1996
  • Тихов С.Ф.
  • Исупова Л.А.
  • Садыков В.А.
  • Розовский А.Я.
  • Лунин В.В.
RU2100067C1
МЕТАЛЛУГЛЕРОДНЫЙ КАТАЛИЗАТОР 1994
  • Молчанов В.В.
  • Чесноков В.В.
  • Буянов Р.А.
  • Зайцева Н.А.
RU2096083C1
КАТАЛИЗАТОР ОКИСЛЕНИЯ ОКСИДА УГЛЕРОДА И УГЛЕВОДОРОДОВ (ВАРИАНТЫ) 1996
  • Черных Г.В.
  • Тихов С.Ф.
  • Садыков В.А.
  • Лысов В.Ф.
RU2103057C1
КАТАЛИЗАТОР ОКИСЛЕНИЯ НА ОСНОВЕ ОКСИДА СО СТРУКТУРОЙ ПЕРОВСКИТА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 1993
  • Тихов С.Ф.
  • Садыков В.А.
  • Кимхай О.Н.
  • Исупова Л.А.
  • Цыбулев П.Н.
  • Воронин П.Н.
RU2065325C1

Иллюстрации к изобретению RU 2 010 597 C1

Реферат патента 1994 года КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ

Изобретение относится к каталитическому сжиганию топлива, а именно к приготовлению катализаторов, используемых в каталитических приборах, предназначенных для обогрева бытовых и жилых помещений. Предложен катализатор, обладающий высокой активностью. Его использование позволит сократить время разжига каталитического обогревателя, которое составит не более 1 мин. При работе каталитического нагревателя исключается образование токсичных соединений в отходящих газах. Катализатор для глубокого окисления углеводородов содержит оксиды кобальта, меди и хрома с добавкой платины, нанесенные на волокнистый, например кремнеземный носитель в виде мата при следующем соотношении компонентов, мас. % : оксид меди 2-4; оксид хрома 8-11; оксид кобальта 4-8; платина 0,006-0,01; носитель остальное. 2 табл.

Формула изобретения RU 2 010 597 C1

КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ, содержащий оксиды хрома и кобальта на волокнистом, например, кремнеземном носителе, отличающийся тем, что, с целью сокращения времени розжига и улучшения условий труда и охраны окружающей среды, он дополнительно содержит оксид меди и платину при следующем соотношении компонентов, мас. % :
Оксид хрома 8 - 11
Оксид кобальта 4 - 8
Оксид меди 2 - 4
Платина 0,006 - 0,01
Указанный носитель Остальное

RU 2 010 597 C1

Авторы

Исмагилов З.Р.

Зайниева И.Ж.

Баранник Г.Б.

Дремин Н.В.

Даты

1994-04-15Публикация

1992-10-07Подача