ЛИГАТУРА Российский патент 1994 года по МПК C22C35/00 

Описание патента на изобретение RU2017853C1

Изобретение относится к черной металлургии, в частности к составам лигатур для раскисления и легирования чугунов, используемых для производства отливок, работающих в условиях износа, в том числе кавитационного изнашивания.

Известна лигатура следующего состава, мас.%: Никель 20-65 Хром 2-45 Кремний 2-30 Титан 0,05-15 Медь 0,1-35 Марганец 0,1-10 Углерод 0,05-0,8 Железо Остальное
Использование известной лигатуры приводит к появлению свободного цементита за счет повышенного содержания хрома, что увеличивает твердость. Металл становится хрупким, а обрабатываемость падает. Кроме того, при раскислении чугуна в металле образуются силикатные включения остроугольной формы, нарушающие сплошность отливок, что приводит к низкой кавитационной стойкости. При высоком содержании титана и марганца в лигатуре силикаты марганца в жидком металле гетерогенно взаимодействуют с карбидами титана, образуя включения типа гренали, что снижает эффективность легирования чугуна титаном.

Аналогичное влияние на свойства чугунных отливок оказывает лигатура следующего состава, мас.%: Углерод 3-8 Хром 8-10 Никель 10-15 Медь 15-20 Кремний 30-40 Железо Остальное
Известна также лигатура, содержащая, мас.%: Хром 1-30 Медь 5-30 Кремний 8-35 Никель 0,5-18 Титан 0,3-8,5 Алюминий 0,1-3,5 Углерод 0,15-5,0 Марганец 0,1-12 Цинк 0,05-8,0 Железо Остальное
Использование лигатуры известного состава позволяет сформировать неметаллические включения благоприятной формы и состава (алюмосиликаты), которые в большинстве случаев удаляются в шлак. Однако повышенное содержание хрома и титана в лигатуре приводит к ухудшению обрабатываемости чугунных отливок, а высокое содержание никеля во всех приведенных составах лигатур значительно увеличивает себестоимость отливок. Кроме того, марганец, кремний, углерод и алюминий в больших количествах снижают плотность чугуна, что также приводит к снижению кавитационной стойкости отливок.

Наиболее близкой к предлагаемой лигатуре по технической сущности и достигаемому результату является сплав, содержащий, мас.%: Титан 10,0-45,0 Кремний 1,0-10,0 Хром 5,0-40,0 Алюминий 1,0-15,0 Медь 0,1-10,0 Марганец 0,1-15,0 Железо Остальное
Использование указанного сплава позволяет повысить износостойкость отливок и придает им удовлетворительную кавитационную стойкость, но при этом ухудшается обрабатываемость отливок за счет отбела, что в условиях массового производства является весьма существенным отрицательным фактором.

В основу изобретения поставлена задача создания лигатуры для раскисления и легирования чугуна, используемого при производстве цилиндров, блоков цилиндров, поршней и т.п., обладающих повышенной кавитационной стойкостью и износостойкостью при сохранении обрабатываемости.

Кавитационный износ может значительно снизить срок службы двигателя, так как в момент каждого такта воспламенения тепло от стенки цилиндра отводится недостаточно быстро, в связи с чем вода, омывающая стенки цилиндра, вскипает. При "захлопывании пузырьков" возникают гидравлические удары с давлением до 30000 кг/см2. Происходит выбивание металлических частиц, возникает эрозия металла.

Поставленная задача достигается тем, что предлагаемая лигатура, содержащая медь, кремний, алюминий, хром, марганец, титан и железо, дополнительно содержит никель и углерод при следующем соотношении элементов, мас.%: Медь 5,0-40,0 Кремний 2,0-5,0 Алюминий 0,05-1,5 Хром 0,15-0,20 Марганец 0,20-0,5 Титан 0,50-1,0 Никель 0,25-1,0 Углерод 2,0-4,0 Железо Остальное
Дополнительное введение в состав лигатуры никеля и углерода позволяет повысить растворимость меди в твердом растворе, стабилизировать перлит и предотвратить выделение феррита.

Углерод в состав лигатуры вводят с целью формирования карбидов титана. При легировании чугуна титан и карбиды титана взаимодействуют с растворенным в чугуне азотом (0,0012-0,0056 мас.%) и углеродом, образуют карбонитриды титана. Эти частицы служат центрами кристаллизации и способствуют образованию мелкодисперсного перлита в чугунных отливках. Кроме того, карбонитриды титана увеличивают износостойкость отливок и повышают их кавитационную стойкость.

Совместная добавка перлитизирующих элементов позволяет минимизировать нижние границы ингредиентов.

Добавка никеля ниже 0,25 мас.% не оказывает благотворного влияния на свойства отливок. Ввод никеля свыше заявляемого предела приводит к увеличению себестоимости отливок без прироста свойств.

Содержание углерода в лигатуре в количестве 2,0-4,0 мас.% обеспечивает полное стехиометрическое связывание титана в карбиды титана. При содержании углерода более 4,0 мас.% углерод оказывает графитизирующее влияние, снижает твердость, износостойкость и кавитационную стойкость отливок. При содержании углерода менее 2,0 мас.% положительного эффекта не наблюдается.

Медь в лигатуре присутствует как перлитообразующий элемент в твердом состоянии. Полное перлитообразование матрицы обеспечивается при содержании меди не менее 5,0 мас.%. Повышение содержания меди свыше 40,0 мас.% приводит к увеличению ликвации, что снижает кавитационную стойкость и износостойкость отливок.

Марганец в лигатуре также выполняет роль перлитизирующего элемента и, кроме того, является раскислителем. Замедляя вторую стадию графитизации, данный элемент предотвращает образование феррита, нейтрализуя влияние кремния. Содержание марганца ниже 0,20 мас.% приводит к снижению раскислительной способности лигатуры, делает матрицу чувствительной к содержанию кремния в чугуне, дестабилизируется эффект перлитообразования, повышается твердость чугуна, снижается обрабатываемость и кавитационная стойкость отливок. Повышение содержания марганца свыше 0,5 мас.% приводит к гетерогенному взаимодействию образующихся марганцовистых неметаллических включений с карбидами и карбонитридами титана в чугуне и снижается кавитационная стойкость отливок.

Алюминий и кремний вводят в состав лигатуры в качестве раскислителей. Комплексное раскисление металла позволяет сформировать неметаллические включения глобулярной формы, которые всплывают в шлак. При этом повышается плотность, износостойкость и кавитационная стойкость отливок. Кроме того, алюминий благоприятно сказывается на форме графитовых включений, резко снижая количество точечного междендритного графита. При содержании алюминия и кремния в лигатуре ниже 0,05 мас.% и 2,0 мас.% соответственно положительного эффекта не наблюдается, а выше 1,5 мас.% и 5,0 мас.% снижается плотность отливок, образуются пленочные окисные включения, повышается доля силикатных неметаллических включений остроугольной формы, выделяются нитриды алюминия в чугуне. Кроме того, в металлической основе появляется феррит. В результате снижаются износостойкость и кавитационная стойкость отливок.

Хром в лигатуре способствует повышению износостойкости и кавитационной стойкости отливок, повышая плотность чугуна и связывая углерод в карбиды. При содержании хрома в лигатуре менее 0,15 мас.% положительного эффекта не наблюдается, а при содержании хрома в лигатуре свыше 2,0 мас.% повышается склонность чугуна к отбелу, снижается обрабатываемость отливок.

Содержание титана в лигатуре в количестве 0,50-1,0 мас.% приводит к формированию в лигатуре мелкодисперсных карбидов титана, а при взаимодействии с азотом, растворенным в чугуне,- карбонитридов титана. При этом измельчается аустенитное зерно, повышается дисперсность перлита, исключается выпадение нитридов алюминия по границам зерен. Кроме того, титан (до 5-10 мас. %), растворяясь в металлической матрице, легирует твердый раствор, повышая его плотность. В результате обеспечивается высокая износостойкость, кавитационная стойкость чугунных отливок и их хорошая обрабатываемость. При содержании титана в лигатуре менее 0,50 мас.% в чугуне образуются нитриды алюминия, разупрочняющие границы зерен, понижается плотность отливок и снижаются их износостойкость и кавитационная стойкость, а при содержании титана в лигатуре более 1,0 мас.% повышается размер карбонитридов титана и снижается обрабатываемость отливок.

П р и м е р. В индукционной печи выплавляли базовый чугун следующего состава, мас. % : углерод 3,0; кремний 1,9; медь 0,20; никель 0,20; хром 0,15; марганец 0,20. Выплавленный чугун обрабатывали в ковшах лигатурами предлагаемого и состава-прототипа. Лигатуру выплавляли в индукционной печи. Никель в состав лигатуры вводили в завалку в виде пластин, углерод вводили с помощью карбюризатора.

Составы используемых лигатур и получаемых чугунов приведены в табл. 1.

Лигатуру в чугун присаживали во всех случаях в количестве 10 мас.% от массы завалки.

Из полученных чугунов отливали детали с модулем затвердевания, соответствующего промышленным деталям (блоки цилиндров), детали проходили необходимую термообработку и из них изготавливали образцы для испытаний.

Обрабатываемость чугуна определяли через скорость резания твердосплавным инструментом равномерной стружкой, при которой инструмент служит не менее 60 мин при подаче 1,1 мм/об. Износостойкость чугуна определяли на установке СМЦ-2. Испытание проводили в паре со сталью 25ФЛ с твердостью после обработки ТВЧ 290 НВ. Время испытания составляло 120 мин. Износостойкость образца-прототипа принимали за 100%. Кавитационную стойкость материала определяли на установке Уилера, представляющей собой магнитострикционную установку с частотой колебаний 8 кГц и удвоенной амплитудой колебаний, равной 40,6 мкм. На установке Уилера испытывались одновременно два образца (из чугунов, обработанных предлагаемой лигатурой и лигатурой-прототипом), совершавших колебания с одинаковой частотой и амплитудой. Кавитационную стойкость образца-прототипа (потеря массы за время испытания 120 мин) принимали за 100%.

Результаты испытаний приведены в табл. 2.

Таким образом, предлагаемый состав лигатуры позволяет повысить износостойкость чугунных отливок на 25%, кавитационную стойкость на 28% при сохранении обрабатываемости отливок на уровне 90-95 м/мин.

Похожие патенты RU2017853C1

название год авторы номер документа
ЛИГАТУРА ДЛЯ РАФИНИРОВАНИЯ И МОДИФИЦИРОВАНИЯ ХРОМИСТЫХ ЧУГУНОВ 2017
  • Гущин Николай Сафонович
  • Нуралиев Фейзула Алибала Оглы
RU2640368C1
АНТИФРИКЦИОННЫЙ ЧУГУН 2013
  • Кузнецов Виктор Анатольевич
  • Трифоненков Александр Даниилович
RU2527572C1
Лигатура для железоуглеродистых сплавов 1989
  • Киселев Сергей Петрович
  • Ермолаев Владислав Васильевич
  • Смирнов Леонид Андреевич
  • Кожуркова Людмила Павловна
  • Ильяшов Александр Александрович
  • Щекалев Юрий Степанович
  • Филиппенков Анатолий Анатольевич
  • Густомесов Арсений Владимирович
  • Мяконьких Михаил Александрович
SU1601177A1
МОДИФИКАТОР ДЛЯ ЧУГУНА 1991
  • Столяр О.Ю.
RU2040575C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Алов Виктор Анатольевич
  • Карпенко Михаил Иванович
  • Епархин Олег Модестович
  • Попков Александр Николаевич
  • Куприянов Илья Николаевич
  • Хомец Ульяна Сергеевна
RU2448184C2
Лигатура для чугуна 1990
  • Святкин Борис Константинович
  • Карпенко Михаил Иванович
  • Цейтлин Александр Маркович
  • Егорова Марина Борисовна
  • Бадюкова Светлана Михайловна
  • Жуков Роман Борисович
SU1705391A1
Износостойкий чугун 1983
  • Марукович Евгений Игнатьевич
  • Карпенко Михаил Иванович
  • Рогов Юлий Аронович
  • Клейнер Михаил Натанович
  • Эфендиев Тофик Галифович
  • Шихмиров Шарафеддин Шихгамзаевич
  • Ворона Георгий Трофимович
SU1151585A1
ЧУГУН 2002
  • Шадров Н.Ш.
  • Плотников Г.Н.
  • Кошелев В.В.
RU2224813C2
ВЫСОКОАЛЮМИНИЕВЫЙ ЧУГУН 1998
  • Косников Г.А.
  • Морозова Л.М.
  • Каплуновский Ю.А.
RU2139950C1
ЧУГУН 1993
  • Шадров Н.Ш.
  • Плотников Г.Н.
  • Беренов Н.Д.
  • Яринских Л.М.
  • Кудинов В.Д.
  • Реньш А.А.
RU2037551C1

Иллюстрации к изобретению RU 2 017 853 C1

Реферат патента 1994 года ЛИГАТУРА

Использование: для производства отливок, работающих в условиях износа, в том числе кавитационного изнашивания. Сущность изобретения: лигатура содержит медь, кремний, алюминий, хром, марганец, титан, никель, углерод и железо при следующем соотношении компонентов, мас.%: медь 5,0 - 40,0; кремний 2,0 - 5,0; алюминий 0,05 - 1,5; хром 0,15 - 2,0; марганец 0,20 - 0,5; титан 0,5 - 1,0; никель 0,25 - 1,0; углерод 2,0 -4,0; железо - остальное. 2 табл.

Формула изобретения RU 2 017 853 C1

ЛИГАТУРА, содержащая медь, кремний, алюминий, хром, марганец, титан и железо, отличающаяся тем, что дополнительно содержит никель и углерод при следующем соотношении компонентов, мас.%:
Медь 5,0 - 40,0
Кремний 2,0 - 5,0
Алюминий 0,05 - 1,5
Хром 0,15 - 2,0
Марганец 0,20 - 0,5
Титан 0,5 - 1,0
Никель 0,25 - 1,0
Углерод 2,0 - 4,0
Железо Остальное

Документы, цитированные в отчете о поиске Патент 1994 года RU2017853C1

Сплав для легирования стали 1978
  • Трегубенко Виктор Васильевич
  • Шушлебин Борис Алексеевич
  • Тышман Григорий Аркадьевич
  • Богданов Николай Андреевич
  • Голодов Сергей Михайлович
  • Кошкин Геннадий Андреевич
  • Эпштейн Наум Исаакович
  • Мельниченко Алексей Андреевич
  • Пандурский Михаил Васильевич
  • Заозерный Николай Тимофеевич
  • Пляцковский Юрий Павлович
SU705001A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 017 853 C1

Авторы

Чайко Н.Н.

Завьялов А.Л.

Кузнецов А.Н.

Даты

1994-08-15Публикация

1992-06-08Подача