СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО СИЛИКОКАЛЬЦИЯ Российский патент 1995 года по МПК B22F9/02 

Описание патента на изобретение RU2030971C1

Изобретение относится к области металлургии, в частности к производству порошкообразных ферросплавов немеханическими способами.

Современные технологии выплавки качественных и высококачественных марок стали, высокопрочного чугуна предусматривают обязательное легирование и модифицирование металла ферросплавами со щелочноземельными элементами (кальций, магний, барий, стронций). Рациональные схемы введения этих ферросплавов (вдувание, в виде проволоки, в виде капсул) требуют приготовления их порошков.

Традиционным способом получения порошкообразных ферросплавов, в том числе высокопроцентного силикокальция, является дробление и помол слитков в дробилках и мельницах (Рысс М.А. Производство ферросплавов. М.: Металлургия, 1975, с. 69-72).

Измельчение силикокальция, относящегося к активным ферросплавам, требует высоких энергетических затрат, трудоемко и чрезвычайно взрывоопасно, т. к. температура начала окисления, характеризующая пожаро- и взрывоопасность получаемых механическим способом порошков, составляет всего 400оС [1].

Наиболее близким к заявляемому является способ получения порошков марганцево-кремниевых сплавов, включающий выплавку сплава и выпуск его через копильник в ковш, где содержание марганца доводят до 20-60 мас.%, кремния - 25-60 мас. % , фосфора - 0,3-1,6 мас.%, введение в сплав щелочно-земельных металлов из расчета 1,1-2,4 весовых единицы на единицу содержащегося в расплаве фосфора, разливку сплава в изложницы и охлаждение в среде паров воды до саморассыпания [2]. В марганцево-кремниевых сплавах, а также в высокопроцентном силикокальции содержание лебоита (нестихеометрическая фаза FeSi2+n, способствующая рассыпанию ферросилиция) невелико или его нет совсем, поэтому саморассыпание тих ферросплавов происходит за счет взаимодействия фосфидов кальция с влагой по реакции:
Ca3P2+6H2O= 2PH3газ+3Са(ОН)2 (1) При этом часть кальция расходуется на образование Са(ОН)2 и расход этот тем больше, чем больше количество фосфора, вводимое в расплав.

При всех преимуществах вышеуказанного способа применительно к высокопроцентному силикокальцию марок СК30 и СК25 (ГОСТ 4762-71) он имеет следующие недостатки: высокая остаточная концентрация фосфора в сплаве более 0,12% препятствует использованию такого силикокальция; снижение содержания кальция в порошках на 1,5-2,5% (по сравнению с расплавом) при введении фосфора из расчета 0,9-1,3% за счет образования Са(ОН)2 по реакции (1) ухудшает качество порошков.

Получаемый известным способом порошкообразный силикокальций достаточно взрывоопасен (температура начала окисления tн.о.=550оС), поскольку резкое охлаждение слитков в среде паров воды вызывает сильные остаточные напряжения, активность порошка остается высокой.

Цель изобретения - повышение качества сплава за счет снижения содержания фосфора, потерь кальция, устранения пожаро- и взрывоопасности.

Поставленная цель достигается тем, что в известном способе получения порошкообразного высокопроцентного силикокальция, включающем приготовление фосфорсодержащего расплава, разливку его в изложницы и обработку слитков водой или паром до саморассыпания, содержание фосфора в расплаве доводят до 0,15-0,40 мас.% и дополнительно вводят алюминий в количестве 1,0-2,5 мас.%, слитки перед обработкой водой или паром выдерживают при температуре 900-1050оС в течение 6-12 ч, после чего охлаждают на воздухе. Выдержка слитков силикокальция при температурах плавления легкоплавких примесных составляющих позволяет последним перераспределяться в объеме металла, выделяться по границам зерен и вызывать стабильное рассыпание, взаимодействуя с влагой.

В предлагаемом способе специальным режимом термообработки достигается равномерное распределение примесей по межзеренным границам и саморассыпание образцов, причем остаточный фосфор в порошках не превышает 0,06-0,08%, что в 1,5-2,5 раза ниже, чем в прототипе.

Влияние алюминия, дополнительно вводимого в расплав в количестве 1,0-2,5 мас. % , заключается в снижении температуры плавления примесной фазы и температуры изотермической выдержки. Так, например, нижний предел термообработки для образцов с заявляемым алюминием составляет 900оС, а без добавки алюминия - 1000оС.

С другой стороны, алюминий, подобно кальцию, активно взаимодействует с фосфором, способствуя рассыпанию силикокальция:
AlP+3H2O= PH3газ+3Н2О (2) Последнее особенно важно, т.к. алюминий, вводимый в высокопроцентный силикокальций в заявляемых пределах, предохраняет кальций, заменяя его, и тем самым повышает качество сплава.

Добавка алюминия в сочетании с режимом термообработки позволяет повысить температуру начала окисления получаемого порошка до 720-860оС, чем обеспечивается его пожаро- и взрывобезопасность. Температура изотермической выдержки менее 900оС не обеспечивает рассыпание образцов с заявляемым содержанием фосфора. Температура выдержки более 1050оС вызывает сплавление слитков, выход жидкого ликвата на поверхность, неоднородность получаемого порошка по высоте слитка, нестабильное рассыпание.

При концентрации фосфора в сплаве менее 0,15% не происходит его рассыпание, а добавка фосфора более 0,40% сопровождается ростом фосфора в готовых порошках, что снижает их качество.

Содержание алюминия в высокопроцентном силикокальции менее 1% практически не предохраняет кальций от расхода по реакции (1) и снижает температуру начала окисления порошков, повышая их пожаро- и взрывоопасность. Алюминий в сплаве в количестве более 2,5% ухудшает его качество, препятствует использованию такого силикокальция для легирования (ГОСТ 4762-71). Продолжительность термообработки менее 6 ч ухудшает стабильность рассыпания из-за недостаточно равномерного распределения примесей, более 12 ч - уже не улучшает показателей рассыпания и требует дополнительных затрат тепла на обогрев.

Нижний предел продолжительности выдержки целесообразен для более высоких температур (1000-1050оС), и наоборот.

Окончательное рассыпание сплава после термообработки в специальной камере с дожиганием выделяющегося фосфористого водорода (РН3) обеспечивает экологическую безопасность процесса.

Обработке водой или паром в заявляемом способе подвергаются термообработанные слитки, остывшие на воздухе до 40-60оС, поскольку с горячих слитков вода будет испаряться, не реагируя с фосфорсодержащими соединениями.

Поскольку операции, отличающие предлагаемый способ от известного, в научно-технической литературе не выявлены, считаем, что заявлемый способ удовлетворяет критерию изобретения "существенные отличия".

П р и м е р ы. Из высокопроцентных марок силикокальция СК 30 (56,50% Si; 30,70% Ca; 0,017% P; 0,76% Al) и СК 25 (61,52% Si; 28,01% Ca; 0,02% P; 0,82% Al) получали сплавы с концентрацией фосфора 0,10-1,0% и алюминия 0,75-3,5% , разливали их в изложницы, выдерживали в нагревательной печи при 800-1100оС в течение 4-14 ч. Далее образцы извлекали из печи, охлаждали на воздухе, обрабатывали водой или паром для саморассыпания. Выплавленные сплавы и получаемые порошки анализировали, а для последних с помощью дериватограмм определяли tн.о.oC и гранулометрический состав рассевом на ситах. Результаты опытов сведены в таблицу, из которой видно, что понижение температуры изотермической выдержки и концентрации фосфора в силикокальции (пример 1) не обеспечивают рассыпания образцов. Повышенная температура изотермической выдержки (пример 8) и увеличение ее продолжительности более заявленной (примеры 1,8) не сопровождаются улучшением рассыпания. Пониженная концентрация алюминия в силикокальции (пример 3) снижает температуру начала окисления порошков, делая их более пожаро- и взрывоопасными. Кроме того, растет расход кальция по реакции (1). Высокая концентрация алюминия в силикокальции, несмотря на высокую tн.о. готовых порошков, не позволяет их использовать для легирования (пример 7).

Использование предлагаемого способа для получения порошкообразного силикокальция (содержание фосфора и алюминия в сплаве 0,15-0,40 и 1,0-2,5 соответственно, выдержка при температуре 900-1050оС в течение 6-12 ч с последующим охлаждением и обработкой водой или паром) позволяет повысить качество порошков за счет уменьшения их пожаро- и взрывоопасности, снижения содержания фосфора в 1,5-3,0 раза и потерь кальция на 3-5%.

Заявляемый способ имеет существенные преимущества перед вариантом получения порошков высокопроцентного силикокальция без добавки алюминия (пример 3) посредством уменьшения потерь кальция на 1,5-2,0% и повышения температуры начала окисления.

Похожие патенты RU2030971C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО ВЫСОКОПРОЦЕНТНОГО СИЛИКОКАЛЬЦИЯ 1991
  • Соловьев М.А.
  • Радугин В.А.
  • Селиванов И.А.
RU2038407C1
Способ получения сплава для раскисления и легирования стали 1987
  • Гасик Михаил Иванович
  • Зубанов Виталий Тимофеевич
  • Поляков Олег Иванович
  • Величко Борис Федорович
  • Великанов Александр Васильевич
  • Козловский Альфред Иванович
  • Поляков Николай Иванович
  • Семенов Игорь Александрович
  • Староселецкий Михаил Ильич
  • Еремеев Анатолий Пантелеевич
  • Ткач Григорий Дмитриевич
  • Мячин Валентин Георгиевич
SU1468951A1
Способ получения дисперсного порошка ферросилиция - утяжелителя 2020
  • Чернега Игорь Николаевич
  • Шевченко Александр Игоревич
RU2741879C1
Способ выплавки быстрорежущих сталей 1976
  • Заозерный Николай Тимофеевич
  • Швец Анатолий Михайлович
  • Осадчий Алексей Николаевич
  • Кутуев Искандер Хасанович
  • Шапкин Анатолий Александрович
  • Лаврентьев Михаил Иванович
  • Гупало Виталий Григорьевич
  • Поспелов Игорь Алексеевич
SU655725A1
Флюс 1976
  • Шестаков Станислав Сергеевич
  • Рысс Марк Абрамович
  • Бородин Николай Егорович
  • Серый Владимир Федорович
  • Холодный Виктор Андреевич
  • Лурье Владимир Исакович
  • Петров Александр Александрович
SU611943A1
ЭКЗОТЕРМИЧЕСКАЯ ШЛАКООБРАЗУЮЩАЯ СМЕСЬ ДЛЯ РАЗЛИВКИ СТАЛЕЙ И СПЛАВОВ 1992
  • Чистяков В.Ф.
  • Матвеев А.Н.
  • Киселев А.А.
  • Сазонов В.Г.
  • Тюрин Е.И.
  • Зырянов Ю.Е.
RU2027776C1
ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2014
  • Кисиленко Владимир Васильевич
  • Бабенко Игорь Владимирович
RU2558746C1
Лигатура 1989
  • Журули Мераб Александрович
  • Капанадзе Заури Прокофьевич
  • Гиоргобиани Теймураз Александрович
  • Бараташвили Илья Бидзинович
  • Демурашвили Давид Ладоевич
SU1693108A1
Сплав для раскисления модифицирования и микролегирования рельсовой стали 1982
  • Донец Игорь Дмитриевич
  • Степанов Владимир Андреевич
  • Паляничка Владимир Александрович
  • Гордиенко Михаил Силович
  • Мелехов Виктор Алексеевич
  • Огрызкин Евгений Матвеевич
  • Висторовский Николай Трофимович
SU1126622A1
Экзотермическая смесь для утепления головной части слитка при разливке сталей и сплавов 2022
  • Леушин Игорь Олегович
  • Грачев Александр Николаевич
  • Рябцев Анатолий Данилович
  • Гарченко Александр Александрович
  • Леушина Любовь Игоревна
RU2773977C1

Иллюстрации к изобретению RU 2 030 971 C1

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО СИЛИКОКАЛЬЦИЯ

Использование: в производстве порошкообразных ферросплавов немеханическим способом. Сущность изобретения: в расплав силикокальция после его выпуска в ковш вводят фосфор в количестве 0,15-0,40 мас.% и алюминий в количестве 1,0-2,5 мас. %, разливают расплав в изложницы. Слитки выдерживают при температуре 900-1050°С в течение 6-12 ч, после чего охлаждают на воздухе. Остывшие слитки обрабатывают водой или паром до саморассыпания. Изотермическая выдержка слитков силикокальция обеспечивает полное равномерное распределение в нем примесей, благодаря чему слитки стабильно рассыпаются. Положительный эффект: повышается качество порошков сплава за счет снижения содержания в них фосфора в 1,5-3,0 раза и потерь кальция на 3-5 %, уменьшения их пожаро- и взрывоопасности. 1 табл.

Формула изобретения RU 2 030 971 C1

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО СИЛИКОКАЛЬЦИЯ, включающий приготовление фосфорсодержащего расплава, разливку его в изложницы и обработку слитков водой или паром до саморассыпания, отличающийся тем, что содержание фосфора в расплаве доводят до 0,15 - 0,40 мас.% и дополнительно вводят алюминий в количестве 1,0 - 2,5 мас.%, слитки перед обработкой водой или паром выдерживают при 900 - 1050oС в течение 6 - 12 ч, после чего охлаждают на воздухе.

Документы, цитированные в отчете о поиске Патент 1995 года RU2030971C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Авторское свидетельство СССР N 1529557, кл
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 030 971 C1

Авторы

Соловьев Михаил Андреевич

Радугин Владимир Алексеевич

Селивонов Игорь Александрович

Даты

1995-03-20Публикация

1991-07-24Подача