СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО ФИЛЬТРОЭЛЕМЕНТА Российский патент 1995 года по МПК C04B38/00 

Описание патента на изобретение RU2031891C1

Изобретение относится к изготовлению керамического фильтроэлемента для ультра- и микрофильтрации на мембране.

В современных технологиях фильтрация в диапазоне 0,2-1 мкм занимает значительное место в медицинской, биологи- ческой, химической и пищевой промышленности, при решении проблем, связанных с очисткой сточных вод и обработкой воды. Эти производства предъявляют высокие требования к фильтроэлементам по производительности и удерживающей способности, по коррозионной устойчивости в различных химических средах, по механической прочности и способности к регенерации.

Наиболее полно обеспечить перечисленные выше запросы промышленности могут керамические мембраны.

Керамические фильтроэлементы, как правило, состоят из керамической подложки со средним размером пор 15 мкм и нанесенной на эту основу мембраны толщиной в несколько десятков микрон со средним диаметром пор 0,2-1 мкм для микрофильтрации и 40-1000 для ультрафильтрации. В основе изготовления керамических мембран лежит использование фракционных порошков оксида алюминия, оксида циркония, карбида кремния, с диаметром частиц 0,2-2,5 мкм для изготовления водных суспензий, которые наносят на пористые подложки. Завершают процесс изготовления сушка и обжиг изделий.

Формирование керамической мембраны из порошковых компонентов осложняется трудностями в получении бездефектной однородной пористой структуры слоя. Мембранное покрытие часто поражается микротрещинами за счет усадки при сушке и спекании.

Известен способ изготовления мембраны, состоящий в приготовлении водной суспензии из набора фракций тонкого порошка оксида алюминия с добавками органической составляющей. Суспензия контактирует с горизонтальной верхней поверхностью пористой керамической подложки определенный промежуток времени. Вследствие различной скорости осаждения частиц разного диаметра опускающийся порошок образует мембрану, в которой размеры пор в слое, контактирующем с подложкой, составляли 1-5 мкм, а у верхнего слоя мембраны - 0,1-0,5 мкм. Излишки жидкости принудительно удаляют, а фильтроэлемент сушат и обжигают. Применение этого способа ограничивается тем, что подложка должна иметь строго горизонтальную поверхность, исключается возможность изготовления трубчатых одноканальных и многоканальных фильтроэлементов.

Известен также способ изготовления фильтроэлемента трубчатой формы, состоящий из нескольких этапов.

Первоначально на основе порошков оксида алюминия различных размеров и связующего готовят керамическую массу, которую экструдируют в трубки. Трубки после сушки и обжига при 1800оС используют в качестве пористой подложки.

На следующем этапе формируют мембрану толщиной 30-40 мкм, которую наносят на подложку в два приема. Готовят водную суспензию из порошков оксида алюминия с различными добавками. В суспензию для первого слоя мембраны вводят порошки со средним диаметром частиц 2,5 мкм, а для второго слоя - 0,2 мкм. Суспензией заполняют внутренний объем трубки, после чего на поверхности остается пористый слой в 20-30 мкм после первого нанесения и 10 мкм после второго. Первый слой обжигают при 1550оС, второй при 1000оС. Открытая пористость в обоих слоях примерно одинакова и составляет 30-40%, Средний диаметр пор в первом слое 1,2 мкм, во втором - 0,2 мкм. Производительность получаемого таким способом фильтроэлемента составляет 3000 л/м2 ˙ч˙ атм, удерживающая способность 0,2 мкм.

Наиболее существенные недостатки известного способа являются следствием используемой для мембраны порошковой системы, склонной к растрескиванию и образованию дефектов. К ним относятся - низкая открытая пористость мембраны (30-40% ) и, соответственно, низкая проницаемость ( ≈3000 л/м2 ˙ч˙ атм по воде);
нанесение раздельно двух слоев с двукратной процедурой обжига;
длительность процессов сушки для предотвращения распространения растрескивания порошкового слоя из-за усадочных явлений;
сложные и длительные процедуры подготовки порошков для смесей.

В итоге получаемые фильтроэлементы имеют весьма высокую стоимость без гарантий отсутствия крупных дефектов (1 мкм).

Наиболее близким к предлагаемому является способ изготовления керамических проницаемых пористых мембран, включающий формирование на пористой основе из керамики или металла тонкого мембранного слоя из простых или сложных оксидов или гидроксидов, а также фторидов металлов или их смеси из суспензии, обработанной ультразвуком, с последующей сушкой получаемой мембраны и ее термообработкой при 400-1100оС.

Мембраны, полученные известным способом, имеют недостаточно высокую пористость и производительность.

Цель изобретения - повышение пористости и производительности.

Поставленная цель достигается тем, что используемую суспензию получают диспергированием волокон в воде с помощью ультразвуковой обработки, седиментации с последующей декантацией тонкой фракции волокон, а осажденную из суспензии мембрану перед обжигом фиксируют обработкой связующим в виде растворов солей алюминия или циркония или коллоидной двуокиси кремния.

При нанесении мембраны волокна должны иметь определенные геометрические параметры, быть однородно распределены в жидкой составляющей, не должны флокулировать в суспензии. Для этого диспергирование волокон в жидкой составляющей проводят при концентрации волокна 5-40 г/л ультразвуковой обработкой суспензии в течение 15-30 мин с интенсивностью излучения 2-10 Вт/см2.

Конкретные значения концентрации волокон в суспензии, продолжительность обработки ультразвуком и интенсивность ультразвукового излучения выбирают в зависимости от исходных размеров используемых волокон и их состава. Снижение концентрации ниже предлагаемого уровня не технологично, превышение верхнего предела не позволяет достичь полного диспергирования, сохраняются исходные конгломераты.

В зависимости от состава волокон для предотвращения их флокуляции рН суспензии должно быть 7-11.

По окончании диспергирования суспензию седиментируют в течение 0,5-20 ч, после чего сливают часть ее, находящуюся выше видимой границы раздела, содержащую наиболее тонкую фракцию и свободную от грубых неволокнистых включений. Конкретное значение длительности процесса седиментации устанавливают в зависимости от вида и диаметра волокон.

Декантированную часть суспензии разбавляют водой до концентрации в ней волокон 0,05-1 г/л и используют для осаждения мембраны.

Различие концентраций внутри вышеприведенного интервала зависимости от диаметра используемого волокна. Для тонких волокон концентрация меньше, для толстых - больше.

Толщину мембранного слоя задают объемом суспензии, рассчитываемым по формуле:
Vж= , где Vж - объем суспензии, л;
С - концентрация волокна в суспензии, г/л;
hм - толщина мембраны, см;
S - площадь покрываемой поверхности, см2;
Р - плотность волокна, г/см3;
θ - относительная плотность мембраны, %.

Для нанесения мембраны используют метод принудительной пропитки. При этом суспензию подают к покрываемой поверхности подложки под давлением 1-2 атм, жидкую составляющую удаляют через противоположную.

Операцию проводят в два приема, при этом первую половину рассчитанного объема суспензии подают под давлением 2 атм, вторую под давлением 1 атм. В случае трубчатых элементов большой длины и многоканальных подачу суспензии в два приема осуществляют с противоположных концов трубки. Такая схема нанесения мембраны обеспечивает ее минимальную дефектность и равномерность толщины по поверхности подложки.

После осаждения мембраны фильтроэлемент сушат на воздухе в течение 1-3 ч при 100-120оС.

Для фиксации мембраны на поверхности подложки высушенный фильтроэлемент погружают в раствор, содержащий соли алюминия, циркония или коллоидную двуокись кремния с концентрациями в интервале 2-10 вес.%. Затем фильтроэлемент сушат в течение 1-3 ч при 120оС и обжигают при 700-1100оС в течение 1 ч. Эти операции обеспечивают высокую прочность самой мембраны и сцепление ее с подложкой без изменения волокнистого характера структуры мембраны и снижения ее фильтровальных характеристик.

Предлагаемый способ позволяет наносить волокнистые мембраны на внешние и внутренние поверхности одноканальных трубок, на внутренние поверхности многоканальных трубок, на поверхности пористых подложек любой геометрии, строго контролируя толщину наносимого слоя. Важным преимуществом предлагаемого способа является также возможность высоких скоростей нагрева и охлаждения в процеccе cушки и обжига и отcутcтвие необходимоcти тщательного их контроля, что почти на порядок снижает затраты на производство фильтроэлементов по сравнению с известными способами, применяемыми для порошковых мембран.

П р и м е р 1. Для изготовления керамического фильтроэлемента в качестве подложки используют одноканальные пористые трубки из оксида алюминия (внутренний диаметр 6 мм, наружный - 10 мм, длина - 800 мм). Трубки-подложки имеют поверхность 35-40%, средний диаметр пор - 10 мкм, производительность по воде 60000 л/с2˙ч˙ атм. Для мембраны используют монокристаллические волокна карбида кремния со средним диаметром 0,1 мкм.

Для нанесения мембраны готовят 1 л водной (рН = 10-11) суспензию с концентрацией волокна 10 г/л. Суспензию в течение 15 мин обрабатывают ультразвуком при интенсивности ультразвукового излучения 4 Вт/см2, что приводит к равномерной диспергации волокон в жидкой составляющей.

Для отделения неволокнистых включений и крупных фракций проводят седиментацию в течение 20 ч, после чего суспензию декантируют, при этом сливают верхнюю часть суспензии, отделяя ее от осевшей фракции. Слитую часть суспензии, где концентрация волокна 5 г/л, разбавляют водой, доводят объем жидкости до 15 л, в которой концентрация волокна составляет 0,3 г/л. Эту суспензию используют для нанесения мембраны.

Требуемый объем суспензии определяют по предложенной выше формуле. Для мембраны толщиной 40 мкм, покрываемой поверхности 150 см2, плотности волокна карбида кремния 3,2 г/см2, относительной плотности мембраны 10% он равен 0,6 л. Рассчитанный объем суспензии делят на две равные части и подают внутрь трубки, первую часть под давлением 2 атм, а вторую часть под давлением 1 атм.

После нанесения мембраны трубки высушивают на воздухе в течение 2 ч при 120оС. Затем на 2-3 с погружают в емкость с раствором связующего, для которого используют 0,25-мольный водный раствор азотнокислого циркония. Затем трубки сушат при 700оС. Полученный фильтроэлемент имеет производительность по воде 8000 л/м2 ч ˙атм, средний диаметр поры - 0,2 мкм.

П р и м е р 2. Для изготовления керамического фильтроэлемента используют одноканальные трубки из оксида алюминия (внутренний диаметр - 5 мм, наружный - 10 мм, длина - 500 мм). Свойства трубки-подложки аналогичны свойствам трубок-подложек, использованных в примере 1. Мембрану из монокристаллических волокон оксида цинка наносят на внешнюю поверхность. Средний диаметр волокон оксида цинка - 0,7 мкм.

Готовят суспензию из 1 л воды (рН = 7), где концентрация волокон оксида цинка - 5 г/л. Условия диспергирования, седиментации и декантации суспензии соответствуют примеру 1. В слитой части суспензии концентрация волокна составляет 2,5 г/л, ее разбавляют водой, доводят объем жидкости до 2,5 л, где концентрация волокна оксида цинка 1 г/л.

Требуемый объем суспензии определяют, как в примере 1. Для мембраны толщиной 30 мкм, покрываемой поверхности 157 см2, плотности волокна 5,6 г/см2, относительной плотности мембраны 30% объем суспензии составляет 0,8 л.

Этот объем суспензии делят на две равные части и поочередно под давлением 2 атм заполняют емкость, внутри которой расположена покрываемая трубка-подложка. Суспензию подают к внешней поверхности, а жидкую составляющую удаляют через внутренний канал трубки, на внешней поверхности трубки получают мембрану толщиной 30 мкм.

После сушки по режиму примера 1 фильтроэлемент погружают на 5 с в раствор связующего, для которого используют 5%-ный водный раствор коллоидной двуокиси кремния. После пропитки связующим фильтроэлемент сушат, как в примере 1. Обжиг проводят при 1100оС в течение получаса. Полученный фильтроэлемент имеет производительность по воде 5000 л/м2 ˙ч ˙ атм, средний размер пор 0,05 мкм.

П р и м е р 3. Для изготовления керамического фильтроэлемента в качестве подложки используют семиканальную трубку-подложку диаметром 25 мм, длиной - 300 мм, где внутренний диаметр каждого канала - 4 мм. Свойства трубки-подложки аналогичны свойствам трубок-подложек, использованных в примере 1.

Мембрану наносят на внутреннюю поверхность каналов, применяя поликристаллические волокна оксида алюминия со средним диаметром 0,8 мкм.

Готовят в 1 л воды (рН 7) суспензию с концентрацией волокна 40 г/л. Условия диспергирования суспензии аналогичны режиму примера 1, а седиментацию проводят в течение получаса. После декантации в слитой части суспензии концентрация волокна равна 12 г/л. ее разбавляют водой, доводят объем жидкости до 20 л, где концентрация волокон оксида алюминия - 0,6 г/л.

Требуемый объем суспензии определяют, как в примере 1. Для мембраны толщиной 100 мкм, покрываемой поверхности 264 см2, при плотности волокна оксида алюминия 3,9 г/см3, относительной плотности мембраны 40% объем суспензии равно 6,8 л.

Этот объем делят на две равные части, половину его подают с одного конца трубки под давлением 1 атм, а вторую часть подают с противоположного конца трубки под давлением 1 атм.

После сушки по режиму примера 1 фильтроэлемент погружают в раствор связующего на 5 с. Для связующего используют 10%-водный раствор коллоидной двуокиси кремния.

Сушку и обжиг фильтроэлемента после пропитки проводят по режиму примера 2.

Полученный фильтроэлемент имеет производительность по воде 15000 л/м2˙ ˙ч˙атм, средний диаметр пор - 0,5 мкм.

Похожие патенты RU2031891C1

название год авторы номер документа
ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ ДЛЯ МИКРО- И УЛЬТРАФИЛЬТРАЦИИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1994
  • Грибков В.Н.
  • Горобец Б.Р.
  • Покровский Д.Д.
RU2079349C1
КЕРАМИЧЕСКИЙ ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ 1992
  • Грибков В.Н.
RU2036187C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФИЛЬТРУЮЩЕГО ЭЛЕМЕНТА ДЛЯ МИКРОФИЛЬТРАЦИИ 2000
  • Горобец Б.Р.
  • Грибков В.Н.
  • Покровский Д.Д.
RU2170610C1
ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ ДЛЯ МИКРО- И УЛЬТРАФИЛЬТРАЦИИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1999
  • Грибков В.Н.
  • Горобец Б.Р.
  • Покровский Д.Д.
RU2164444C1
Способ получения неорганического мембранного материала 2019
  • Адамович Владимир Игоревич
  • Левченко Александр Николаевич
  • Покровский Даниил Данилович
  • Щетанов Игорь Борисович
  • Якушев Денис Анатольевич
RU2712671C1
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКНИСТОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА 2007
  • Щетанов Борис Владимирович
  • Романович Игорь Владимирович
  • Ивахненко Юрий Александрович
  • Следков Василий Константинович
RU2358954C1
ТЕРМОСТОЙКИЙ ВЫСОКОПОРИСТЫЙ ВОЛОКНИСТЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ И ЗВУКОПОГЛОЩАЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Арутюнян Гурген Рубенович
  • Волков Валерий Семенович
  • Шуль Галина Сергеевна
  • Софейчук Юрий Михайлович
  • Томчани Ольга Васильевна
  • Соболев Анатолий Федорович
  • Филиппова Римма Дмитриевна
RU2345042C2
СПОСОБ ПОЛУЧЕНИЯ САМОФОРМИРУЮЩЕГОСЯ ВОЛОКНИСТОГО ВЫСОКОТЕМПЕРАТУРНОГО ТЕПЛОЗАЩИТНОГО МАТЕРИАЛА И ИЗДЕЛИЯ ИЗ НЕГО 2022
  • Филиппов Денис Анатольевич
  • Неяглов Олег Сергеевич
  • Абузин Юрий Алексеевич
  • Игнаткин Иван Константинович
RU2791757C1
ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ 2012
  • Шамшетдинов Каюм Билялович
  • Келина Ирина Юрьевна
  • Чевыкалова Людмила Александровна
  • Бородай Феодосий Яковлевич
  • Рудыкина Валентина Николаевна
  • Алексеев Дмитрий Владимирович
RU2497783C2
СПОСОБ ПОЛУЧЕНИЯ ЦЕОЛИТНОГО СЛОЯ НА ПОДЛОЖКЕ 2006
  • Иванова Ирина Игоревна
  • Трусов Лев Ильич
  • Князева Елена Евгеньевна
  • Федотов Владимир Петрович
  • Никитина Мария Александровна
  • Добрякова Ирина Вячеславовна
  • Смирнов Андрей Валентинович
  • Федосов Даниил Александрович
RU2322390C1

Реферат патента 1995 года СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО ФИЛЬТРОЭЛЕМЕНТА

Предлагаемое изобретение может быть использовано для очистки и обработки сточных вод. Сущность изобретения: на пористую керамическую подложку осаждают материал мембраны из водной суспензии. В качестве суспензии используют взвешенную в воде дисперсию моно- или поликристаллических волокон окислов или карбидов, которую готовят дисперсированием их в воде ультразвуковой обработкой в течение 15 - 30 мин при интенсивности ультразвукового излучения 2 - 10 Вт/см2 с последующей седиментацией в течение 0,5 - 20 ч и декантацией для отделения части жидкости, содержащей тонковолокнистые фракции с диаметром волокон 0,05 - 0,5 мкм. Предлагается концентрация волокон в суспензии при диспергировании 5 - 40 г/л и концентрация волокон в суспензии, из которой проводится осаждение мембраны, равная 0,05 - 1 г/л. После сушки обрабатывают 2 - 8% -ным водным раствором солей алюминия или 3 - 10%-ным коллоидным водным раствором двуокиси кремния и обжигают. Характеристика: средний диаметр пор 0,05 - 0,5 мкм, производительность по воде 5000 - 15000 л/м2ч·атм. 1 с. и 8 з.п. ф-лы.

Формула изобретения RU 2 031 891 C1

1. СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО ФИЛЬТРОЭЛЕМЕНТА, состоящего из керамической пористой подложки и керамической пористой мембраны, включающий приготовление водной суспензии путем диспергирования керамического материала ультразвуковой обработкой, формирование мембраны на подложке путем осаждения из суспензии, сушку и обжиг, отличающийся тем, что в качестве материала суспензии используют керамические волокна, после ультразвуковой обработки суспензии ее подвергают седиментации с последующей декантацией для получения суспензии из тонкой фракции волокон, а перед обжигом мембрану фиксируют обработкой растворами солей алюминия, или циркония, или коллоидной двуокиси кремния. 2. Способ по п.1, отличающийся тем, что диспергирование проводят в воде при рН 7 - 11 и концентрации исходных волокон 5 - 40 г/л. 3. Способ по п.1, отличающийся тем, что диспергирование проводят при интенсивности ультразвукового излучения 2 - 10 Вт/см2 в течение 15 - 30 мин. 4. Способ по п.1, отличающийся тем, что седиментацию суспензии проводят в течение 0,5 - 20 ч. 5. Способ по п.1, отличающийся тем, что суспензию декантируют с отделением части жидкости, содержащей тонковолокнистую фракцию со средним диаметром волокон 0,05 - 0,5 мкм. 6. Способ по пп.1 и 5, отличающийся тем, что декантированную суспензию разбавляют до концентрации в ней волокон 0,05 - 1 г/л. 7. Способ по п.1, отличающийся тем, что осажденную мембрану после сушки обрабатывают погружением фильтроэлемента на 3 - 5 с в раствор соли алюминия, или циркония, или коллоидной двуокиси кремния. 8. Способ по пп.1 и 7, отличающийся тем, что для обработки мембраны используют 2 - 8%-ный раствор солей алюминия или циркония. 9. Способ по пп.1 и 7, отличающийся тем, что для обработки мембраны используют 3 - 10%-ный раствор коллоидной двуокиси кремния.

Документы, цитированные в отчете о поиске Патент 1995 года RU2031891C1

Способ борьбы с сорняками 1976
  • Рудаков Григорий Михайлович
  • Габдурашитов Ильсун Магфурзянович
  • Кияткин Константин Кузьмич
  • Торговицкий Михаил Федорович
SU663356A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 031 891 C1

Авторы

Горобец Б.Р.

Покровский Д.Д.

Павлюченков В.О.

Левинская М.Х.

Симкина Т.В.

Поляков А.В.

Першикова О.И.

Даты

1995-03-27Публикация

1993-03-12Подача