МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ СТАЛЬ Российский патент 1995 года по МПК C22C38/32 C22C38/38 

Описание патента на изобретение RU2033461C1

Изобретение относится к металлургии сталей, в частности экологически чистых харопрочных сталей с пониженной остаточной активностью для изготовления оборудования АЭС, работающего при температурах до 650оС в условиях интенсивного нейтронного облучения.

Наиболее близкой по технической сущности и достигаемому результату к предложенной стали является малоактивируемая сталь следующего химического состава, мас. Углерод 0,17 Кремний 0,20 Марганец 0,40 Хром 11,52 Вольфрам 1,83 Ванадий 0,22 Железо Остальное [1]
Достоинством указанной стали является ускоренный спад ее наведенной активности в результате отсутствия в ее составе ниобия, молибдена, никеля и других активируемых элементов. Однако сталь при этом характеризуется пониженными кратковременными механическими свойствами и длительной прочностью при температуре 560оС.

Целью изобретения является повышение кратковременных механических свойств и длительной прочности малоактивируемой стали при сохранеии уровня спада ее наведенной активности после нейтронного облучения.

Для достижения поставленной цели жаропрочная коррозионно-стойкая сталь, содержащая углерод, кремний, марганец, хром, вольфрам и ванадий, дополнительно содержит бор, титан и церий при следующем соотношении компонентов, мас. Углерод 0,10-0,20 Кремний 0,02-1,00 Марганец 0,5-2,0 Хром 10,0-13,9 Вольфрам 0,8-2,9 Ванадий 0,05-0,45 Титан 0,01-0,10 Бор 0,0005-0,008 Церий 0,001-0,100 Железо Остальное, при этом структурный эквивалент А должен удовлетворять условию А ≅11,0.

Сохранение принципа легирования стали, предусматривающего исключение из ее состава наиболее активируемых элементов, таких как никель, молибден и ниобий, обеспечивает сохранение ускоренного спада наведенной активности предлагаемой стали, т.е. ее низкую активируемость после интенсивного нейтронного облучения флюенсом, равным 1023 Н/см2. При этом введение в сталь бора, церия и титана соответственно в количествах 0,0005-0,008; 0,001-0,1 и 0,01-0,1% обеспечивает повышение уровня ее кратковременных механических свойств и длительной прочности при температуре 550оС за счет создания определенной морфологии упрочняющей карбидной фазы в мартенситной структуре стали и упрочнения межзеренных границ в аустенитном состоянии.

П р и м е р ы. Опытные плавки стали выплавляли в вакуумно-индукционных печах "Бальцерс". Деформируемость стали при ковке на заготовку удовлетворительная. Температурный интервал горячей деформации 900-1200оС.

Механические свойства определяли на стандартных образцах при испытании на растяжение по ГОСТ 10446-80. Испытания на длительную прочность проводили на стандартных образцах в соответствии c ГОСТ 10145-81.

Спад наведенной активности оценивали по соотношению ядерной физики
Ан η˙ ˙Σакт.Р(1 e-λt), где Ан наведенная активность, Рд;
η эффективность регистрации;
средняя плотность нейтронов, нейтр./см2 х с;
Σ акт. макросечение для изотопа;
Р масса исходного изотопа;
λ постоянная распада изотопа;
t длительность облучения.

Химический состав и свойства предлагаемой стали и известной (прототипа) представлены в табл. 1 и 2.

По сравнению с прототипом предлагаемая малоактивируемая сталь характеризуется повышенной длительной прочностью, а также повышенными прочностью и пластичностью при температуре 550оС при сохранении ускоренного спада наведенной активности после нейтронного облучения. Ускоренный спад наведенной активности стали улучшает экологическую обстановку на атомных станциях и снижает время захоронения радиоактивных отходов.

Предлагаемая сталь технологична при горячей деформации, термической и механической обработках и рекомендуется для изготовления деталей конструкций, работающих в активной зоне реакторов АЭС.

Похожие патенты RU2033461C1

название год авторы номер документа
ТВЭЛ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ (ВАРИАНТЫ) И ОБОЛОЧКА ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ 2003
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Ватулин А.В.
  • Голованов В.Н.
  • Шамардин В.К.
  • Буланова Т.М.
  • Цвелев В.В.
  • Шкабура И.А.
  • Иванов Ю.А.
  • Форстман В.А.
RU2262753C2
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2001
  • Солонин М.И.
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Бибилашвили Ю.К.
  • Голованов В.Н.
  • Кондратьев В.П.
  • Чернов В.М.
  • Шамардин В.К.
RU2211878C2
БРИДИНГОВЫЙ ЭЛЕМЕНТ ДЛЯ ТЕРМОЯДЕРНОГО РЕАКТОРА СИНТЕЗА 2004
  • Ватулин А.В.
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Капышев В.К.
  • Коваленко В.Г.
  • Стребков Ю.С.
  • Чернов В.М.
RU2267173C1
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННО СТОЙКАЯ СТАЛЬ 2007
  • Родин Виктор Никифорович
  • Сафонов Борис Владимирович
  • Чуканов Андрей Павлович
  • Агеев Валерий Семенович
  • Никитина Анастасия Андреевна
  • Леонтьева-Смирнова Мария Владимировна
RU2360992C1
МАЛОАКТИВИРУЕМАЯ КОРРОЗИОННО-СТОЙКАЯ И РАДИАЦИОННО СТОЙКАЯ ХРОМИСТАЯ СТАЛЬ 2006
  • Иолтуховский Александр Григорьевич
  • Велюханов Виктор Павлович
  • Зеленский Геннадий Константинович
  • Леонтьева-Смирнова Мария Владимировна
  • Погодин Владимир Павлович
  • Голованов Виктор Николаевич
  • Шамардин Валентин Кузьмич
  • Фураева Елена Владиславовна
  • Шевцов Аркадий Павлович
RU2325459C2
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2013
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Орлов Александр Сергеевич
  • Ершов Николай Сергеевич
RU2515716C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ АКТИВНОЙ ЗОНЫ ВОДО-ВОДЯНОГО РЕАКТОРА НА МЕДЛЕННЫХ НЕЙТРОНАХ ИЗ МАЛОАКТИВИРУЕМОЙ ФЕРРИТНО-МАРТЕНСИТНОЙ СТАЛИ 2009
  • Агеев Валерий Семенович
  • Друженков Владимир Владимирович
  • Иолтуховский Александр Григорьевич
  • Леонтьева-Смирнова Мария Владимировна
  • Можанов Евгений Михайлович
  • Никитина Анастасия Андреевна
  • Потапенко Михаил Михайлович
  • Фураева Елена Владиславовна
  • Шевцов Аркадий Павлович
RU2412255C1
ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ УСТРОЙСТВ ХРАНЕНИЯ ОТРАБОТАВШИХ ЯДЕРНЫХ МАТЕРИАЛОВ 2022
  • Дегтярев Александр Фёдорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Дуб Алексей Владимирович
RU2804233C1
МАЛОАКТИВИРУЕМЫЙ РАДИАЦИОННОСТОЙКИЙ СВАРОЧНЫЙ МАТЕРИАЛ 2002
  • Горынин И.В.
  • Рыбин В.В.
  • Карзов Г.П.
  • Щербинина Н.Б.
  • Козлов Р.А.
  • Бурочкина И.М.
  • Галяткин С.Н.
  • Зубова Г.Е.
  • Курсевич И.П.
  • Лапин А.Н.
  • Подкорытов Р.А.
RU2212323C1
МАЛОАКТИВИРУЕМЫЙ КОРРОЗИОННО-СТОЙКИЙ СВАРОЧНЫЙ МАТЕРИАЛ 2008
  • Рыбин Валерий Васильевич
  • Карзов Георгий Павлович
  • Галяткин Сергей Николаевич
  • Щербинина Наталья Борисовна
  • Бурочкина Ирина Михайловна
  • Зубова Галина Евстафьевна
  • Лапин Александр Николаевич
RU2383417C1

Иллюстрации к изобретению RU 2 033 461 C1

Реферат патента 1995 года МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ СТАЛЬ

Изобретение относится к черной металлургии, в частности к экологически чистым малоактивируемым жаропрочным сталям с пониженной остаточной активностью для изготовления оборудования АЭС, используемого в условиях интенсивного нейтронного облучения. Целью изобретения является повышение кратковременных механических свойств и длительной прочности малоактивируемой стали при сохранении уровня спада ее наведенной активности после нейтронного облучения. Сталь дополнительно содержит бор, титан и церий при следующем соотношении компонентов, мас. %: углерод 0,10 - 0,20; кремний 0,02 - 1,0; марганец 0,5 - 2,0; хром 10,0 - 13,9; вольфрам 0,8 - 2,9; ванадий 0,05 - 0,45; титан 0,01 - 0,10; бор 0,0005 - 0,0080; церий 0,001 - 0,100; железо остальное, при этом структурный эквивалент A должен удовлетворять условию A ≅ 11 . 2 табл.

Формула изобретения RU 2 033 461 C1

МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ СТАЛЬ, содержащая углерод, кремний, марганец, хром, вольфрам, ванадий и железо, отличающаяся тем, что, с целью повышения кратковременных механических свойств и длительной прочности при сохранении уровня спада наведенной активности после нейтронного облучения, она дополнительно содержит бор, титан и церий при следующем соотношении компонентов, мас.

Углерод 0,10 0,20
Кремний 0,02 1,00
Марганец 0,5 2,0
Хром 10,0 13,9
Вольфрам 0,8 2,9
Ванадий 0,05 0,45
Титан 0,01 0,10
Бор 0,0005 0,0080
Церий 0,001 0,100
Железо Остальное
при этом структурный эквивалент A должен удовлетворить условию: A ≅ 11.

Документы, цитированные в отчете о поиске Патент 1995 года RU2033461C1

D.S.Gelles Reseatch and development of iron - based allous for nuelear technology
ISIJ International, VOL
Способ обработки медных солей нафтеновых кислот 1923
  • Потоловский М.С.
SU30A1

RU 2 033 461 C1

Авторы

Писаревский Л.А.

Красных В.И.

Апарин Д.В.

Иванов Л.И.

Демина Е.В.

Прусакова М.Д.

Щенкова И.А.

Борисов В.П.

Мелькумов И.Н.

Касаточкина Т.Н.

Медведева Е.А.

Бибилашвили Ю.К.

Даты

1995-04-20Публикация

1991-06-28Подача