ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ Российский патент 1995 года по МПК G01L9/04 

Описание патента на изобретение RU2034253C1

Изобретение относится к измерительной технике и может быть использовано для измерения давлений в агрегатах ракетной и космической техники в условиях воздействия нестационарной температуры агрессивной измеряемой среды.

Известны тонкопленочные датчики давления, предназначенные для измерения давления в условиях воздействия нестационарной температуры измеряемой среды, содержащие вакуумированный корпус, металлический упругий элемент в виде выполненной за одно целое с цилиндрическим основанием жесткозащемленной мембраны, покрытой двухслойным диэлектриком, на котором расположена тензочувствительная схема [1]
Недостатком известной конструкции датчика давления является наличие неравномерного температурного поля на мембране в зоне установки тензорезисторов при воздействии нестационарной температуры измеряемой среды из-за разницы термических сопротивлений мембраны и цилиндрического основания, обусловленной неоптимальным соотношением толщины цилиндрической части и мембраны. Наличие неравномерного температурного поля приводит к появлению температурной погрешности.

Наиболее близким к предлагаемому изобретению является тонкопленочный датчик давления, содержащий вакуумированный корпус, металлический упругий элемент в виде выполненной за одно целое с опорным основанием круглой жесткозащемленной мембраны с диэлектриком, на поверхности которого расположены тензочувствительные элементы, соединенные в измерительную схему, и дополнительную пленку с малым коэффициентом теплопроводности, расположенную на приемной поверхности мембраны [2]
Однако этот датчик невозможно использовать для измерения давления некоторых агрессивных и активных составляющих современного ракетного топлива и окислителя, а также продуктов их сгорания. Это связано с тем, что необходимость низкой теплопроводности дополнительной пленки во многом определяет ее структуру. По сравнению с материалом упругого элемента дополнительная пленка получается существенно более пористой и рыхлой.

Проникновение агрессивных компонентов топлива или окислителя внутрь сравнительно рыхлой структуры пленки приводит к ее ускоренному разрушению. В частности поэтому затруднено использование известных датчиков давления в многоразовых ракетных двигателях из-за невозможности 100%-го удаления остатков окислителя или топлива с воспринимающей поверхности датчика без снятия его с изделия. Кроме того, коррозионная стойкость дополнительной пленки, выполненной из материала с малым коэффициентом теплопроводности, недостаточна по причине малой коррозионной стойкости материала дополнительной пленки.

Целью изобретения является повышение стойкости к воздействию агрессивной измеряемой среды, а также обеспечение многоразового использования за счет облегчения удаления остатков окислителя или топлива.

Для этого в тонкопленочном датчике давления, содержащем вакуумированный корпус, металлический упругий элемент в виде выполненной за одно целое с опорным основанием круглой жесткозащемленной мембраны с диэлектриком, на поверхности которого расположены тензочувствительные элементы, соединенные в измерительную схему, приемная боковая поверхность опорного основания выполнена с полностью регулярным микрорельефом с выпуклыми элементами.

Элементы поверхности могут иметь вид идентичных шестиугольников, а их параметры определяются следующим соотношением:
R K · при β 30о и γ 150о, где: R высота элемента поверхности;
r радиус мембраны;
h толщина стенок опорного основания;
Н толщина мембраны;
l высота опорного основания;
К поправочный коэффициент, учитывающий зависимость высоты элемента;
β, γ углы, отсчитанные от линий, проходящих через середины противоположных сторон элементов до линии абсцисс, проведенной параллельно образующей приемной поверхности опорного основания.

На фиг. 1 изображен тонкопленочный датчик давления; на фиг. 2 сечение А-А на фиг. 1; на фиг. 3 вид Б на фиг. 1.

Датчик содержит вакуумированный корпус 1, упругий элемент 2 в виде выполненной за одно целое с опорным основанием 3 круглой жесткозащемленной мембраны 4 с диэлектриком 5, на поверхности которого расположены тензочувствительные элементы 6, соединенные в измерительную схему. Приемная боковая поверхность опорного основания выполнена в виде поверхности с полностью регулярным микрорельефом с выпуклыми элементами (фиг. 2, 3).

Элементы поверхности выполнены в виде идентичных шестиугольников, а их параметры определены в соответствии с указанным соотношением.

Датчик давления работает следующим образом.

При изменении давления измеряемой среды происходит прогиб рабочей части мембраны, приводящий к деформации пленки диэлектрика и тензочувствительной схемы. При деформации тензорезисторов меняется их электрическое сопротивление, в результате чего появляется разбаланс моста, составленного из этих резисторов, который фиксируется внешним измерительным устройством (на фиг. 1 не показан).

При изменении температуры измеряемой среды, например при термоударе скачкообразном изменении температур (наиболее характерном режиме работы агрегатов ЖРД), происходит восприятие температуры измеряемой среды как рабочей частью, так и цилиндрической частью упругого элемента. При этом в связи с тем, что термические сопротивления рабочей части и цилиндрической части упругого элемента различны, а площадь приемной боковой поверхности опорного основания больше площади мембраны за счет выполнения приемной боковой поверхности опорного основания в виде поверхности с полностью регулярным микрорельефом с выбранными характеристиками, неравномерность температурного поля на рабочей части мембраны в зоне установки тензорезисторов будет незначительна, а следовательно, будет незначительная аддитивная температурная погрешность.

В случае воздействия агрессивной измеряемой среды, например "ацетила", она будет взаимодействовать только с материалом упругого элемента и не будет взаимодействовать ее сравнительно нестойкой дополнительной пленкой. Отсутствие взаимодействия измеряемой среды со сравнительно рыхлой и пористой дополнительной пленкой приводит к возможности повышения многоразовости использования датчика давления. Приемная боковая поверхность опорного основания выполнена в виде поверхности с полностью регулярным микрорельефом, во-первых, для увеличения площади поверхности контактирования боковой поверхности с измеряемой средой, во-вторых, для равномерного распределения увеличения площади контактирования по боковой поверхности упругого элемента, в-третьих, для равномерного распределения центров "пузырькового кипения" по боковой поверхности упругого элемента. Элементы поверхности упругого элемента выполнены выпукло, так как при выполнении их вогнутыми будут образовываться острые выступы, которые могут привести к образованию повышенной напряженности электрического поля и появлению взрывоопасной ситуации.

Элементы поверхности могут быть выполнены в виде шестиугольников, так как в этом случае увеличение поверхности более равномерно распределено по поверхности упругого элемента по сравнению с выполнением элементов поверхности в виде четырехугольников. Соотношение выбрано, исходя из следующих предпосылок. Экспериментально обнаружено, что величина элемента поверхности пропорциональна отношению разницы толщины стенки опорного основания и толщины мембраны к толщине мембраны. Высота элемента пропорциональна также отношению площади мембраны π r2 к площади приемной боковой поверхности упругого элемента 2 π rl. Поделив числитель и знаменатель на π r, получим указанное выше соотношение.

Коэффициент К учитывает соотношение высоты элемента поверхности и геометрических размеров упругого элемента. Угол β выбран равным 30о, а угол γ= 150о, так как только в этом случае шестиугольник будет правильным шестиугольником, что дополнительно выравнивает распределение температуры по боковой поверхности упругого элемента. Кроме того, такие величины углов обеспечивают меньшее поверхностное трение боковой поверхности упругого элемента с измеряемой средой за счет отсутствия ребер шестиугольника, расположенных перпендикулярно направлению распространения измеряемой среды.

Для тонкопленочного датчика давления с размерами: r=2,5 мм; Н=0,3 мм; h= 1,5 мм; l=5 мм экспериментально определено, что минимум погрешности был при величине элемента поверхности R=0,7 мм, что соответствует К=0,35 мм.

У тонкопленочного датчика давления Вт 237, изготовленного в соответствии с прототипом, стойкость к воздействию среды "ацетил" составляет не более двух циклов по 120 ч, стойкость тонкопленочного датчика давления, выполненного в соответствии с предлагаемым изобретением, составляет 8-10 циклов по 120 ч каждый. Таким образом, технико-экономическими преимуществами предлагаемого изобретения являются повышение стойкости к воздействию агрессивной измеряемой среды и повышение многоразовости использования за счет отсутствия взаимодействия измеряемой среды с рыхлым и пористым материалом дополнительной пленки.

Похожие патенты RU2034253C1

название год авторы номер документа
ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ 1987
  • Белозубов Е.М.
RU2028588C1
ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ 1987
  • Белозубов Е.М.
RU2028587C1
ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ 1988
  • Белозубов Е.М.
RU2092801C1
ДАТЧИК ДАВЛЕНИЯ 1984
  • Белозубов Е.М.
RU2028583C1
ДАТЧИК ДАВЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1988
  • Белозубов Е.М.
RU2095772C1
ДАТЧИК ДАВЛЕНИЯ 1987
  • Белозубов Е.М.
  • Жучков А.И.
RU2034252C1
ДАТЧИК ДАВЛЕНИЯ 1986
  • Белозубов Е.М.
  • Михайлов П.Г.
RU2028585C1
ДАТЧИК ДАВЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1987
  • Белозубов Е.М.
  • Михайлов П.Г.
RU2028586C1
ДАТЧИК ДАВЛЕНИЯ 1984
  • Белозубов Е.М.
RU2024829C1
ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ 1987
  • Белозубов Е.М.
  • Педоренко Н.П.
RU2041452C1

Иллюстрации к изобретению RU 2 034 253 C1

Реферат патента 1995 года ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ

Использование: для измерения давления в агрегатах ракетной и космической техники в условиях воздействия на датчик давления нестационарной температуры агрессивной измеряемой среды. Сущность изобретения: для повышения стойкости к воздействию агрессивной среды и обеспечения многоразового использования в тонкопленочном датчике давления с жесткозащемленной мембраной 4, выполненной за одно целое с опорным основанием 3, приемная боковая поверхность опорного основания 3 выполнена с полностью регулярным микрорельефом с выпуклыми элементами. Элементы поверхности могут иметь вид идентичных шестиугольников, параметры которых выбираются, исходя из определенного соотношения. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 034 253 C1

1. ТОНКОПЛЕНОЧНЫЙ ДАТЧИК ДАВЛЕНИЯ, содержащий вакуумированный корпус, металлический упругий элемент в виде выполненной за одно целое с опорным основанием круглой жесткозащемленной мембраны с диэлектриком, на поверхности которого расположены тензочувствительные элементы, отличающийся тем, что, с целью повышения стойкости к воздействию агрессивной среды и обеспечения многоразового использования, приемная боковая поверхность опорного основания выполнена с полностью регулярным микрорельефом с выпуклыми элементами. 2. Датчик давления по п.1, отличающийся тем, что элементы поверхности имеют вид идентичных шестиугольников, а их параметры определены по соотношению

при β=30°,
γ=150°,
где r и H соответственно радиус и толщина мембраны;
h, l соответственно толщина стенки и высота опорного основания;
R высота элемента поверхности;
K поправочный коэффициент;
β,γ соответственно углы, отсчитанные от линий, проходящих через середины противоположных сторон элементов до линии абсцисс, проведенной параллельно образующей приемной поверхности опорного основания.

Документы, цитированные в отчете о поиске Патент 1995 года RU2034253C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Авторское свидетельство СССР N 255215, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 034 253 C1

Авторы

Белозубов Е.М.

Даты

1995-04-30Публикация

1988-03-28Подача