УСТРОЙСТВО ТОКОПОДВОДА К ЭЛЕКТРОДУ ДЛЯ ЭЛЕКТРОЛИЗА РАСПЛАВЛЕННЫХ СОЛЕЙ Российский патент 1995 года по МПК C25C3/16 C25C3/12 

Описание патента на изобретение RU2041295C1

Изобретение относится к цветной металлургии и может быть использовано для получения щелочных и щелочно-земельных металлов из расплавов их галогенидных солей при высоких температурах.

Аноды из графита применяют в электролизах для получения лития. Графитовые аноды имеют ряд существенных недостатков: малый срок службы и повышенный расход электроэнергии. Разогрев анодных блоков при прохождении электрического тока способствует их интенсивному разрушению под воздействием кислорода воздуха. Мелкие частицы графита попадают в расплав и снижают качество получаемого металла. Существенное падение напряжения (до 1 В) наблюдается в контакте токопроводящая шина-графитовый анод, который осуществляется с помощью металлических скоб, которые прижимаются к поверхности графита с помощью болтового соединения.

Известно устройство, в котором соединение углеродной части электрода и металлической токоподводящей штанги выполнено при помощи заливки в углубление графитовой части литейного чугуна. Контакт чугуна с графитом хуже, чем контакт жидкого металла с графитом. Чугун хлорируется при повышенных температурах, что приводит к разрушению электрода.

Близким по технической сущности является составной электрод, содержащий рабочую головку, соединенную с токоподводящим приводом, который выполнен в виде замкнутой трубы с герметично закрывающимся отверстием в верхней части ее для заполнения этой трубы теплоносителем. Достоинством этого электрода является то, что его устройство позволяет обеспечивать интенсивный теплосъем с горячей зоны электрода. Недостатком этого электрода является отсутствие защиты от воздействия газообразного галогена места контакта "графит жидкий металл", что снижает срок службы электрода.

Наиболее близким по технической сущности является способ соединения токоподводящих шин, в котором описано устройство токоподвода к электроду для электролиза расплавов солей, содержащее выполненный с выемкой электрод, токоподводящую штангу, установленную в выемку электрода с образованием кольцевого зазора, в который помещен легкоплавкий сплав. Однако известное устройство имеет ряд существенных недостатков.

Отсутствует защита контакта "графит-металл" от воздействия газообразного галогена диффундирующего по порам графита. Это снижает срок службы электрода. Кроме того, не обеспечивается равномерное распределение тока по границе "графит-металл", так как в момент работы электролизера легкоплавкий сплав находится в твердом состоянии. Это приводит к увеличению энергозатрат в ходе эксплуатации данного устройства, снижению срока службы электрода.

Целью изобретения является увеличение срока службы электрода и снижения энергозатрат при получении щелочных и щелочно-земельных металлов электролизом расплавов галогенидов этих металлов.

Это достигается тем, что в устройство токоподвода к электроду для электролиза расплавов солей в графитовой части электрода выполняется углубление в виде полусферы на внутреннюю поверхность которого наносится сплошное покрытие из никеля (или другого металла или сплава химически устойчивого в атмосфере галогена) толщиной 1-4 мм. Зазор между металлическим токоподводом и графитовой частью заполнен легкоплавким сплавом следующего состава мас. олово 39,9-60; свинец 60-39,9; никеля (или другого металла, который был использован в виде сплошного покрытия на графите) 0,1. Диаметр металлической токоподводящей штанги относится к глубине ее погружения в углубление в графите от 1:2,5 до 1:2,6. Высота уровня легкоплавкого сплава в зазоре не превышает от 3/4 до 4/5 общей глубины углубления. Токоподводящая штанга выполнена сплошной из металла, обладающего высокой электропроводностью.

Контакт токоподводящей штанги с графитом осуществляется через легкоплавкий сплав и металлическое покрытие. Сплошное покрытие увеличивает срок службы электрода, так как защищает легкоплавкий сплав от взаимодействия с хлором, диффундирующим по порам графитового электрода. Вследствие пористости графита сплошное покрытие металла толщиной менее 1 мм получить сложно, и оно будет не надежно из-за возможности проникновения хлора по микродефектам. При толщине покрытия более 4 мм относительно высокое электросопротивление никеля (или другого металла устойчивого к воздействию галогена) вызовет дополнительные потери электроэнергии, возможно возникновение зон местного перегрева, кроме того получить сплошное покрытие большой толщины сложно с точки зрения технологии. По сравнению с прототипом очевидно, что жидкий контакт обеспечивает более надежную и равномерную передачу электроэнергии от токоподвода к графитовому электроду, в результате не возникает зон местного перегрева и увеличивается срок службы электрода.

Защита зоны контакта от воздействия газообразного хлора с помощью никелевого покрытия также увеличивает срок службы электрода предлагаемой конструкции по сравнению с прототипом.

Дно углубления в графитовой части, выполненное в виде полусферы, обеспечивает равномерное распределение тока по всей поверхности контакта "жидкий металл-графит", кроме того, такая геометрия углубления облегчает технологию нанесения металлического покрытия одинаковой толщины. В результате по сравнению с прототипом срок службы электрода возрастает.

Для того, чтобы токовая нагрузка на металлический токоподвод соответствовало переходному сопротивлению "металл-графит" необходимо, чтобы диаметр токоподвода относился к глубине погружения в углубление в графитовой части от 1: 2,5 до 1: 2,6. Это также увеличивает срок службы предлагаемого устройства.

Чтобы исключить взаимодействие (растворение) металла покрытия со сплавом, последний насыщают материалом покрытия. Содержание свинца и олова подбирают таким, чтобы температура плавления сплава была от 200 до 250оС. Если температура плавления сплава выше 250оС может нарушиться контакт жидкий сплав-никель, если ниже 200оС, то возрастает упругость паров ценных компонентов сплава при рабочих режимах работы электрода и как результат ухудшаются условия труда обслуживающего персонала и возрастают потери ценных компонентов сплава. Чтобы улучшить условия труда и снизить потери жидкого сплава, последний заливают в зазор между токоподводящей штангой и графитовой частью на высоту от 3/4 до 4/5 от нижней точки углубления. Верхняя часть зазора заливается герметизирующим составом (жидкое стекло с асбестом, силиконовое масло). Это позволяет снизить взаимодействие жидкого сплава с воздухом, т.е. увеличивает срок службы токоподводящего устройства. Работа устройства токоподвода к электроду предлагаемой конструкции и положительный эффект, получаемый при этом иллюстрируются следующими примерами испытаний.

П р и м е р. Устройство токоподвода к электроду было установлено в действующую промышленную ванну по получению электролитического лития из расплава KCl-LiCl, работающую в интервале температур 450-500оС. Токовая нагрузка на цельнографитовых и составных анодах различалась в 1,4-1,5 раза при одинаковом напряжении приложенным к ним. Меньшее на 40-50% сопротивление составного анода позволяет снизить потери электроэнергии на получение 1 кг электролитического лития на 10-15% Непрерывная эксплуатация составного электрода в течение 6 месяцев на промышленной ванне показало, что его сопротивление практически не изменилось. Несмотря на то, что токовая нагрузка на анод возросла в 1,5 раза, температура электрода (на уровне дна углубления графитовой части) понизилась с 300оС для графитового электрода до 260оС для составного электрода, что свидетельствует о более эффективном отводе тепла от зоны контакта составного анода по сравнению с цельнографитовым. Использование предлагаемой конструкции при получении щелочных и щелочно-земельных металлов электролизом хлоридных расплавов солей этих металлов по сравнению с известными техническими решениями позволяет получить следующие преимущества: увеличить срок службы электрода; в настоящее время промышленная ванна с предлагаемым устройством проработала 6 месяцев без изменения электрических характеристик электрода, что свидетельствует о том, что его разрушение не происходит; сократить энергозатраты на производство единицы продукции на 10-15% повысить качество получаемого металла за счет снижения содержания в нем примеси графита; увеличить срок безостановочной работы электролизера; облегчить доступ к контакту электрода и токоподводящей шины. Сократить затраты ручного труда обслуживающего персонала в атмосфере анодных газов, которые необходимы при замене электродов.

Похожие патенты RU2041295C1

название год авторы номер документа
ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛОВ В ЖИДКОМ ВИДЕ 1994
  • Зайков Ю.П.
  • Ивановский Л.Е.
  • Молостов О.Г.
  • Хрипченко С.Ю.
RU2089674C1
СОСТАВ РАСПЛАВА ДЛЯ БОРИРОВАНИЯ 2001
  • Чернов Я.Б.
  • Анфиногенов А.И.
RU2215060C2
Устройство токоподвода к электроду для электролитического получения окислителей перекисного типа 2018
  • Потапова Галина Филипповна
  • Мантузов Антон Викторович
  • Воронцов Павел Сергеевич
RU2711425C2
СПОСОБ ПОЛУЧЕНИЯ КАДМИЯ 1994
  • Казанцев Г.Ф.
  • Барбин Н.М.
  • Софинский А.В.
  • Ивановский Л.Е.
  • Молчанова Н.Г.
  • Москаленко Н.И.
RU2123544C1
УГЛЕРОДНЫЙ ЭЛЕКТРОД СРАВНЕНИЯ 2010
  • Суздальцев Андрей Викторович
  • Зайков Юрий Павлович
  • Храмов Андрей Петрович
RU2440443C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ МОЛИБДЕНА ЭЛЕКТРОЛИЗОМ РАСПЛАВОВ 1997
  • Виноградов-Жабров О.Н.
  • Межуев В.А.
  • Потоскаев Г.Г.
  • Калантырь В.И.
  • Курсков В.С.
  • Волков М.Ф.
  • Панов Г.А.
RU2124074C1
АЛЮМИНИЕВЫЙ ЭЛЕКТРОД СРАВНЕНИЯ 2007
  • Зайков Юрий Павлович
  • Суздальцев Андрей Викторович
  • Храмов Андрей Петрович
  • Ковров Вадим Анатольевич
RU2368707C2
СПОСОБ ОЧИСТКИ РАСПЛАВЛЕННОГО ХЛОРИДНОГО ЭЛЕКТРОЛИТА ДЛЯ ПОЛУЧЕНИЯ ПЛАТИНОВЫХ МЕТАЛЛОВ 2007
  • Салтыкова Нина Архиповна
RU2368706C2
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ ЭЛЕКТРОЛИЗОМ 2008
  • Зайков Юрий Павлович
  • Храмов Андрей Петрович
  • Шарапов Вячеслав Вадимович
  • Шуров Николай Иванович
RU2401327C2
УСТРОЙСТВО ДЛЯ АНАЛИЗА ГАЗА 1992
RU2094790C1

Реферат патента 1995 года УСТРОЙСТВО ТОКОПОДВОДА К ЭЛЕКТРОДУ ДЛЯ ЭЛЕКТРОЛИЗА РАСПЛАВЛЕННЫХ СОЛЕЙ

Сущность: электрод для электролиза расплавов солей содержит графитовую рабочую головку с выемкой, выполненной со сплошным металлическим покрытием, в которой устанавливается с образованием кольцевого зазора токоподводящая штанга. Глубина выемки 2,5 2,6 ее диаметра. Дно выемки выполнено в виде полусферы. зазор между рабочей головкой и токоподводом заполняется на 3/4 4/5 от глубины выемки легкоплавким сплавом, насыщенным материалом покрытия. Покрытие лучше выполнять из никеля толщиной 1 4 мм. Изобретение обеспечивает увеличение срока службы электрода и сокращение энергозатрат на производство единицы продукции. 4 з.п. ф-лы.

Формула изобретения RU 2 041 295 C1

1. УСТРОЙСТВО ТОКОПОДВОДА К ЭЛЕКТРОДУ ДЛЯ ЭЛЕКТРОЛИЗА РАСПЛАВЛЕННЫХ СОЛЕЙ, содержащее выполненный с выемкой электрод, токоподводящую штангу, установленную в выемку с образованием кольцевого зазора, в который помещен легкоплавкий сплав, отличающееся тем, что с целью увеличения срока службы электрода и снижения энергозатрат на единицу продукции, выемка выполнена со сплошным металлическим покрытием, глубина выемки составляет 2,5 2,6 ее диаметра, дно выемки выполнено в виде полусферы, легкоплавкий сплав насыщен материалом покрытия. 2. Устройство по п. 1, отличающееся тем, что покрытие выполнено из никеля толщиной 1 4 мм. 3. Устройство по п. 1, отличающееся тем, что зазор между электродом и токоподводом заполнен легкоплавким сплавом на 3/4 4/5 глубины выемки. 4. Устройство по пп. 1 и 3, отличающееся тем, что температура плавления легкоплавкого сплава 200 250oС. 5. Устройство по пп. 1,3,4, отличающееся тем, что легкоплавкий сплав содержит 39,9 60 мас. олова, 60 39,9 мас. свинца и 0,1 мас. никеля.

Документы, цитированные в отчете о поиске Патент 1995 года RU2041295C1

СПОСОБ СОЕДИНЕНИЯ ТОКОПОДВОДЯЩИХ ШИН 0
  • Д. Г. Зазовский, Г. М. Камарь В. Л. Кубасов Л. Н. Шифрин
SU280867A1
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1

RU 2 041 295 C1

Авторы

Ивановский Л.Е.

Зайков Ю.П.

Чемезов О.В.

Муратов Е.П.

Шевкунов В.П.

Молостов О.Г.

Даты

1995-08-09Публикация

1990-07-27Подача