Изобретение относится к производству печатных плат, конкретно к регенерации медно-аммиачных травильных растворов, и может быть использовано в радиотехнической, электротехнической и другой отраслях для выделения избыточной меди из отработанных травильных растворов с последующим возвратом травильного раствора в процесс.
Известны медно-аммиачные травильные растворы, имеющие следующий состав, г/л: Хлорная медь 160-165
(катионов Сu2+ 70-75), Хлористый аммоний 100-120 Водный аммиак 145-150
Отработанные травильные растворы с содержанием Сu2+ 120-140 г/л в большинстве производств утилизируются без регенерации или накапливаются на производстве.
Известны химические способы извлечения меди из отработанных медноаммиачных травильных растворов нейтрализацией кислыми растворами и взаимодействием с восстановителями [1] Однако в этом способе растворы невозможно вернуть в производство печатных плат. Кроме того, в эти растворы переходит значительное количество восстановителя ионов аммония, который требуется удалять перед сбросом в канализацию.
Наиболее близким к изобретению является способ электрохимической регенерации отработанных медно-аммиачных травильных растворов [2] который позволяет снизить содержание меди в растворах до заданной концентрации и возвратить их в производство.
Указанный способ при использовании титановых катодов и графитовых анодов позволяет снизить содержание меди в отработанных растворах до концентрации, равной концентрации в исходных травильных растворах. При этом на катоде выделяется металлическая медь по реакции:
2[Cu(NH3)4]2++4 __→ 4Cu°+4NH3
Впоследствии выделившаяся медь удаляется с электродов механическим путем. Однако одновременно в медно-аммиачном растворе идет и стравливание меди с электродов. Кроме того, в этом способе на аноде происходит следующий электрохимический процесс:
2Cl--2=Cl2
Выделяющийся газообразный хлор является препятствием для применения этого способа в производстве.
Целью изобретения является регенерация травильного медно-аммиачного раствора для последующего его возврата в производство с проведением процесса регенерации без выделения в атмосферу токсичных газов и предотвращением одновременного растворения меди в медно-аммиачном комплексе.
Это достигается тем, что процесс проводят в две стадии: на первой стадии избыточные ионы меди сорбируются на катионите; на второй катионит с сорбированными ионами меди, но без ионов хлора, оставшихся в растворе, подвергается электрохимической регенерации.
После проведения ионообменной сорбции содержание ионов меди в отработанном травильном растворе снижается до 70-75 г/л без изменения содержания остальных компонентов раствора (в том числе и ионов хлора). Такой раствор может быть возвращен в производство, в ванны травления печатных плат. Избыточная медь, сорбированная на катионите, снимается с него электрохимическим способом. Использование на первой стадии ионообменной сорбции позволяет исключить проведение электрохимического процесса непосредственно в медно-аммиачном растворе, что дает возможность исключить выделение в атмосферу газообразного хлора и одновременное протекание процессов выделения и растворения меди на электродах. В качестве сорбента для стадии ионного обмена предлагается использовать сульфокислотный катионит в NH4 форме, что позволяет извлекать из травильного раствора медь, не внося в него посторонних катионов.
Техническая суть изобретения заключается в следующем: медно-аммиачный раствор с 120-140 г/л меди пропускают через колонку, помещенную в электролизерную камеру и заполненную сильнокислотным катионитом КУ-2-8 в NH4-форме. Оптимальные параметры ионного обмена: скорость сорбции 5 мл/мин, соотношение высоты колонки к диаметру 5:1, емкость катионита по меди 0,13 г/г. Сорбция меди из аммиачных растворов проводится до содержания меди в растворе 70-75 г/л, после чего регенерированный травильный раствор корректируется по рН и возвращается в производство. Электролизерная камера, снабженная титановыми катодами и графитовыми анодами, заполняется затем 5%-ным раствором сульфата аммония. При включении электрического тока металлическая медь выделяется на катоде. Катионит при этом регенерируется и может быть вновь использован для сорбции меди.
П р и м е р 1. Стеклянную колонку заполняют катионитом КУ-2-8 в NH4-форме. Соотношение высоты слоя катионита к диаметру колонки 5:1, объем катионита 20 см3, удельный объем 2,5 см3/г. Через слой катионита пропускают 30 см3 отработанного аммиачно-медного раствора травления плотностью 1,08 г/л с концентрацией меди 117 г/л. Содержание меди в фильтрате снижается до 76 г/л, концентрация остальных компонентов не изменяется. Емкость катионита по меди 0,16 г/л. Катионит, сорбировавший на себя 1,23 г меди, перегружают в ячейку из полипропиленовой сетки, которую помещают в электролизер. В качестве электродов используют графитовый анод и титановый катод. Электролизерную ячейку заполняют 5% -ным раствором сульфата аммония [(NH4)2 ˙SO4] Время электролиза 2 ч ток 0,5 А, плотность тока 0,4 А/дм2. При этом на титановом катоде выделяется 1,2 г меди, на аноде кислород, хлор не образуется.
П р и м е р 2 (сравнительный). 30 см3 отработанного медно-аммиачного раствора травления заливают в электролизер с титановым катодом и графитовым анодом и проводят электролиз. Время электролиза 2 ч, ток 0,5 А, плотность тока 0,4 А/дм2. При этом на катоде выделяется 0,62 г меди (60% от теоретического), на аноде 1,16 г газообразного хлора. Концентрация меди в медно-аммиачном растворе снижается до 96 г/л.
П р и м е р 3. Процесс проводят в соответствии с примером 1, но используют стеклянную колонку с соотношением высоты слоя к диаметру колонки 1:1. Концентрация меди в фильтрате после сорбции на катионитовой колонке 80 г/л. Емкость катионита по меди 0,13 г/г. 20 см3 катионита сорбирует 1,1 г меди. При электролизе на катионите выделяется 1,04 г меди, на аноде выделяется кислород.
П р и м е р 4. Процесс проводят в соответствии с примером 1, но используют стеклянную колонку с соотношением высоты слоя катионита к диаметру колонки 8: 1. Концентрация меди в фильтрате после сорбции на катионитовой колонке 78 г/л. Емкость катионита по меди 0,14 г/г. 20 см3 катионита сорбирует 1,15 г меди. При электролизе на катионите выделяется 1,1 г меди, на аноде кислород.
П р и м е р 5. Процесс проводят в соответствии с примером 1, но используют макропористый катионит КУ-23-15/100 в аммониевой форме. Через 26 см3 катионита с удельным съемом 3,2 см3/г пропускают 30 см3 раствора травления. Емкость КУ-23-15/100 по меди 0,15 г/г. Концентрация меди в отработанном растворе 117 г/л, в фильтрате 76 г/л. Емкость катионита по меди 0,15 г/г. 26 см3 катионита сорбирует 1,2 г меди. При электролизе выделяется 1,15 г меди. На аноде выделяется кислород.
П р и м е р 6. Процесс проводят в соответствии с примером 1, но для сорбции меди используют амфолит АНКБ-35. Через 28 см3 амфолита (удельный объем 3,4 см3/г) пропускают 30 см3 раствора травления. Концентрация меди в отработанном растворе 117 г/л в фильтрате 93 г/л. Емкость амфолита по меди 0,09 г/г, 28 см3 амфолита сорбирует 0,72 г меди. При электролизе на катоде выделяется 0,69 г меди. На аноде выделяется кислород.
П р и м е р 7 (сравнительный). Процесс проводят в соответствии с примером 1, но используют сульфокатионит в Н-форме. При этом в результате перехода Н-ионов в раствор травления понижается рН раствора с 9 до 6-7 и часть меди выпадает в осадок в виде гидроокиси и остается в межгранульном пространстве катионита. Емкость катионита по ионам меди 0,13 г/г. Концентрация меди в фильтрате 48 г/л, снижается также концентрация аммиака и ионов аммония. Использование этого раствора невозможно. Катионит для последующего использования требует длительной регенерации.
В таблице приведены зависимости эффективности способа регенерации медно-аммиачных растворов от условий сорбции и типа катионита.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ РЕГЕНЕРАЦИИ МЕДНО-АММИАЧНОГО ТРАВИЛЬНОГО РАСТВОРА | 2016 |
|
RU2620228C1 |
Способ регенерации медно-хлоридного травильного раствора | 2018 |
|
RU2677583C1 |
СПОСОБ ОБРАБОТКИ ОТРАБОТАННОГО РАСТВОРА БЛЕСТЯЩЕГО ТРАВЛЕНИЯ МЕДИ | 2021 |
|
RU2763856C1 |
СПОСОБ ОБРАБОТКИ РАСТВОРА ПОДТРАВЛИВАНИЯ ПЕЧАТНЫХ ПЛАТ | 2021 |
|
RU2765894C1 |
СПОСОБ РЕГЕНЕРАЦИИ СОЛЯНОКИСЛОГО МЕДНО-ХЛОРИДНОГО РАСТВОРА ТРАВЛЕНИЯ МЕТОДОМ ЭЛЕКТРОЛИЗА | 2024 |
|
RU2824908C1 |
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ОЧИСТКИ ВОДНЫХ РАСТВОРОВ ЦИНКА ОТ МАРГАНЦА | 2005 |
|
RU2301287C2 |
РЕАГЕНТНО-ЭЛЕКТРОЛИЗНЫЙ МЕТОД РЕГЕНЕРАЦИИ МЕДНО-АММИАЧНОГО РАСТВОРА ТРАВЛЕНИЯ МЕДИ | 2018 |
|
RU2696380C1 |
РЕГЕНЕРАЦИЯ СОЛЯНОКИСЛОГО МЕДНО-ХЛОРИДНОГО РАСТВОРА ТРАВЛЕНИЯ МЕДИ МЕТОДОМ МЕМБРАННОГО ЭЛЕКТРОЛИЗА | 2019 |
|
RU2709305C1 |
СПОСОБ УТИЛИЗАЦИИ МЕДЬСОДЕРЖАЩИХ ОТХОДОВ | 1996 |
|
RU2157417C2 |
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ОЧИСТКИ ВОДНЫХ РАСТВОРОВ МЕДИ ОТ МАРГАНЦА | 2001 |
|
RU2209839C2 |
Использование: изобретение относится к регенерации медно-аммиачных травильных растворов и может быть использовано в радиотехнической, электротехнической и других отраслях для выделения избыточной меди из отработанных травильных растворов с последующим возвратом травильного раствора в процесс. Сущность: регенерацию медно-аммиачных травильных растворов проводят в две стадии. На первой стадии избыточные ионы меди сорбируют на катионите, а на второй катионит с сорбированными ионами меди, но без ионов хлора, оставшихся в растворе, подвергают электрохимической регенерации. 3 з.п.ф-лы, 1 табл.
Молодчикова, Л.П | |||
Климов, А.И | |||
и Реус Л.А | |||
Автоматизированная установка регенерации обработанных травильных медно-аммиачных растворов | |||
Научно-технические достижения, 88, вып | |||
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Авторы
Даты
1995-08-20—Публикация
1993-02-26—Подача