Изобретение относится к способам доочистки сточных вод от ионов тяжелых металлов и может быть использовано в электрохимической, машиностроительной, металлургической и других отраслях промышленности.
Известны реагентные способы очистки промышленных сточных вод от ионов железа, олова, цинка, меди, хрома, когда ионы металлов осаждают в виде гидроксидов при рН растворов порядка 9-10 путем введения в сточные воды гидроксида или карбоната натрия. При этом общее остаточное содержание тяжелых металлов в очищенной воде составляет 5-7 мг/л, в том числе медь 1-2 мг/л, цинк 2 мг/л [1]
Сброс в канализационную сеть сточных вод с остаточным содержанием тяжелых металлов порядка нескольких мг наносит как (мг/л) экономический, так и экологический ущерб, т.к. наносится ущерб рыбному, сельскому и лесному хозяйству и здравоохранению. Тяжелые металлы даже при низких концентрациях обладают высокой токсичностью, а реагентные и электрохимические способы не обеспечивают очистку промышленных сточных вод до предельно допустимых концентраций (ПДК) вредных веществ в воде и водоемах.
Наиболее близким по технической сущности и достигаемому результату является способ доочистки сточных вод от солей тяжелых металлов [2] согласно которому сточные воды, содержащие ионы тяжелых металлов фильтруют через сорбент на основе кокса. Для получения сорбента сначала через фильтр, загруженный шамотной крошкой, пропускают сточные воды, содержащие нефтепродукты, затем загрузку прокаливают при температуре 320-600оС, пропуская дымовые газы и только потом через слой образовавшегося кокса фильтруют сточные воды гальванического цеха, поступающие со станции нейтрализации. Способ позволяет очищать сточные воды от ионов тяжелых металлов до уровня ПДК и это выгодно отличает его от других применяемых способов. Однако технология получения сорбента для осуществления способа сложна, длительна и осуществима только при наличии шамотной крошки, нефтепродуктов и дымовых газов, позволяющих достигать температуры 320-600оС, что резко снижает возможность применения способа.
Цель изобретения повышение степени очистки сточных вод, упрощение процесса и расширение возможности применения способа.
Поставленная цель достигается тем, что в способе доочистки промышленных сточных вод от ионов тяжелых металлов, включающем фильтрацию очищенных сточных вод через слой сорбента, в качестве сорбента используют оксиды марганца (III,IV), иммобилизованные путем осаждения из растворов перманганата калия в матрицу волокон хлопковой целлюлозы, облученной гамма-квантами с экспозиционной дозой 2,58˙102 2,58˙103 Кл/кг, а сорбцию осуществляют при рН сточных вод 7,0-7,5. Сопоставительный анализ с прототипом показывает, что заявляемый способ доочистки сточных вод от ионов тяжелых металлов отличается тем, что в качестве сорбента используют оксиды марганца (III,IV), иммобилизованные путем осаждения из растворов перманганата калия в матрицу хлопковых волокон, облученного гамма-квантами с дозой 2,58˙10-2,5˙103 Кл/кг, а сорбцию осуществляют при рН сточных воды 7,0-7,5.
П р и м е р. Хлопковое волокно облучали гамма-лучами экспозиционными дозами 2,58˙10-2,58˙103 Кл/кг. Затем облученные волокна обрабатывали в 0,05-0,1 М растворе перманганата калия в течение 5-10 мин при температуре 40-80оС. Доза облучения 2,58˙104 Кл/кг и последующая обработка окислителем (перманганатом калия, модуль ванны 1: 100) приводят к сильной деструкции волокна, а при дозе 2,58˙10 Кл/кг количество окислов марганца, иммобилизованных на волокне, слишком мало при сорбции ионов цинка из раствора, т.е. при выборе дозы облучения, концентрации раствора перманганата калия и времени обработки волокна авторы руководствовались экспериментальными данными, показавшими, что с ростом дозы облучения, температуры и концентрации раствора перманганата калия, а также времени обработки увеличивается количество иммобилизованных на волокне оксидов марганца, но протекают деструктивные процессы, которые приводят к тому, что в результате обработки хлопок теряет волокнистую структуру. Обработанное таким способом волокно содержит оксиды марганца (III,IV), которые являются сорбентами для ионов цинка и железа, в частности, и ионов тяжелых металлов вообще. Форма окислов марганца (III,IV) иммобилизованных на волокнах нитрона, может быть иной нежели форма окислов на волокнах хлопка.
Модифицированное вышеуказанным способом хлопковое волокно применяется в дальнейших примерах в качестве сорбента.
П р и м е р 1. В стаканчик, емкостью 50 мл вводят 1 мл 1М нитрата натрия, содержащего 10-8 5˙10-5 М Zn+2 и имеющего рН-7,4. Добавляют 0,067 г облученного дозой 2,58˙10 Кл/кг, обработанного 0,1М раствором перманганата калия в течение 10 мин при 80оС хлопкового волокна, встряхивают в течение 30 мин, отбирают аликвотную часть раствора и определяют остаточное содержание цинка. Степень извлечения цинка 94%
П р и м е р 2. Аналогичен 1. рН раствора 8,5. Степень извлечения цинка 90%
П р и м е р 3. Аналогичен 1, но рН раствора 8,3 и доза облучения 2,58˙103 Кл/кг. Степень извлечения цинка 89%
П р и м е р 4. Аналогичен 1, рН раствора 7,0. В качестве сорбента хлопковое волокно, облученное дозой 2,58˙103 Кл/кг и обработанное 0,1М раствором перманганата калия в течение 5 мин при 80оС. Степень извлечения цинка 96%
П р и м е р 5. Аналогичен 4, рН раствора 7,2. Степень извлечения цинка 94%
П р и м е р 6. Аналогичен 1, рН раствора 7,4. В качестве сорбента хлопковое волокно, облученное дозой 2,58˙103 Кл/кг и обработанное 0,05М раствором перманганата калия в течение 5 мин при 80оС. Степень извлечения цинка 96%
П р и м е р 7. Аналогичен предыдущим примерам. Вместо цинка вводили ионы 59Fe, в качестве сорбента использовали облученное дозой 2,58˙102 Кл/кг и обработанное 0,1М раствором перманганата калия в течение 40 мин при 40оС хлопковое волокно, рН раствора 7,5. Степень извлечения железа 96,4%
П р и м е р 8. Аналогичен 7. В качестве сорбента использовали облученное дозой 2,58˙103 Кл/кг и обработанное 0,1М раствором перманганата калия в течение 5 мин при 60оС хлопковое волокно, рН 8,45. Степень извлечения железа 99,5%
Этот способ позволяет извлекать малые количества цинка и железа из промышленных сточных вод и таким образом проводить их доочистку, что позволяет сделать вывод о соответствии заявляемого технического решения критерию "Промышленная применимость". Экспериментальные данные по зависимости извлечения малых количеств цинка и железа в зависимости от рН растворов представлены в таблице.
Анализ экспериментальных данных показывает, что в интервале значений рН, регламентируемых для сточных вод, возможно количественное извлечение из растворов 10-6 10-8 М малых количеств ионов цинка и железа путем сорбции их на облученном дозами 2,58˙102 2,58˙103 Кл/кг и обработанном 0,05-0,1 М раствором перманганата калия хлопковом волокне.
Использование предлагаемого способа извлечения цинка и железа из их растворов сорбцией иммобилизованными в модифицированных хлопковых волокнах окислами марганца (III,IV) имеет следующие преимущества по сравнению с прототипом:
способ осуществляется в одну стадию с использованием обычных реагентов;
достигается достаточно высокая степень извлечения (порядка 96-98%) цинка и железа из растворов при рН, допустимом для сточных вод в сравнении с прототипом;
способ прост по своему выполнению, не требует специального оборудования и высоких температур, осуществляется в течение непродолжительного времени.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ РАСТВОРОВ | 1991 |
|
RU2104779C1 |
Способ извлечения марганца из водных растворов | 1989 |
|
SU1682314A1 |
СПОСОБ МОДИФИЦИРОВАНИЯ СОРБЕНТОВ ДЛЯ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ | 2022 |
|
RU2792209C1 |
СПОСОБ МОДИФИЦИРОВАНИЯ СОРБЕНТОВ ДЛЯ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ | 2021 |
|
RU2768623C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ | 2010 |
|
RU2438995C1 |
СПОСОБ МОДИФИЦИРОВАНИЯ ПОЛИСАХАРИДНЫХ СОРБЕНТОВ ДЛЯ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ | 2020 |
|
RU2750149C1 |
СПОСОБ МОДИФИЦИРОВАНИЯ СОРБЕНТОВ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ | 2011 |
|
RU2471721C1 |
Способ получения сорбента для извлечения соединений тяжелых металлов из сточных вод | 2016 |
|
RU2624319C1 |
СПОСОБ ОЧИСТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ ОТ РАДИОНУКЛИДОВ ЦЕЗИЯ | 2008 |
|
RU2369929C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1992 |
|
RU2042645C1 |
Использование: для доочистки сточных вод от ионов тяжелых металлов, в электротехнической, металлургической и других отраслях промышленности. Промышленные сточные воды пропускают через слой сорбента, представляющий собой хлопковое волокно, на котором иммобилизован оксид марганца (III, IV) путем осаждения последнего из растворов перманганата калия в матрицу хлопкового волокна и облученное гамма-квантами с экспозиционной дозой 2,58·102-2,58·103 Кл/кг. Процесс сорбции осуществляют при рН сточных вод 7,0 7,5. Степень сорбции 96 98% 1 табл.
СПОСОБ ДООЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ, включающий фильтрацию очищенных сточных вод через слой сорбента, отличающийся тем, что в качестве сорбента используют хлопковое волокно, на котором иммобилизован оксид марганца (III, IY) путем осаждения последнего из раствора перманганата калия в матрицу хлопкового волокна и облученное гамма-квантами с экспозиционной дозой 2,58 · 102 2,58 · 103 Кл/кг, а фильтрацию осуществляют при pH сточных вод 7,0 7,5.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ доочистки сточных вод от солей тяжелых металлов | 1985 |
|
SU1375569A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1995-10-20—Публикация
1992-09-01—Подача