СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОНЦЕНТРИРОВАННОГО ДИОКСИДА СЕРЫ Российский патент 1995 года по МПК C01B17/50 C01C1/24 

Описание патента на изобретение RU2050315C1

Изобретение относится к способам получения диоксида серы разложением сульфит-бисульфита аммония (в растворе) концентрированной серной кислотой с одновременным получением сульфата аммония и может быть использовано в химической промышленности (моющие средства, гидросульфит натрия, сульфанола и др. ), в бумажной, легкой и пищевой отраслях, а также для установок очистки выхлопных (дымовых) газов различных производств химической, металлургической и других отраслей промышленности и ТЭЦ от диоксида серы.

Наиболее близким по технической сущности и достигаемому результату к изобретению является способ получения высококонцентрированного диоксида серы разложением сульфит-бисульфита аммония (в растворе) концентрированной серной кислотой в насадочных аппаратах (башнях) при температуре 90-100оС (за счет подачи в аппарат острого пара) и десорбцией диоксида серы из раствора продувкой аппарата воздухом с получением высококонцентрированного диоксида серы и раствора сульфата аммония (монография, Васильев Б.Т. Отвагина М.И. Технология серной кислоты. М. Химия, 1985, с.221).

Недостатки этого способа следующие.

Концентрация получаемого диоксида серы 85-95% Невозможность получения 100% диоксида серы без загрязнения сульфата аммония диоксидом серы.

Высокое содержание растворенного диоксида серы в получаемом растворе сульфата аммония (2,0%), что ведет к потерям диоксида серы и ухудшает экологию при дальнейшем использовании раствора (за счет выделения диоксида серы в окружающую атмосферу).

Высокий расход пара 140 кг/т SО2 (6 атм).

Низкая интенсивность процесса 180-200 т SО23 год.

Цель изобретения обеспечение возможности получения 100%-ного диоксида серы, повышение степени чистоты сульфата аммония, а также снижение энергетических затрат.

Это достигается в способе получения высококонцентрированного диоксида серы, включающем разложение раствора сульфит-бисульфита аммония серной кислотой с использованием тепла пара с последующей десорбцией диоксида серы и выводом образующегося раствора сульфата аммония, в котором процесс разложения исходного раствора серной кислотой ведут в высокодисперсном состоянии при времени контакта реагентов 0,5-1 с с последующим нагревом реакционной смеси до 65-75оС.

Целесообразность заявленного интервала температур процесса определяется следующим:
при температуре ниже 65оС начинается резкое замедление процессов разложения и десорбции, что ведет к увеличению содержания растворенного диоксида серы в растворе сульфата аммония, и снижаются интенсивность и полнота процесса разложения;
при температуре выше 75оС увеличивается расход пара без какого-либо ускорения указанных процессов.

В указанном оптимальном интервале температур достигается полное разложение сульфита и бисульфита аммония с получением 100% диоксида серы и практически полная десорбция диоксида серы (до содержания диоксида серы в растворе сульфата аммония не более 0,1% выход SО2 99,6%). Целесообразность выбранного интервала контакта в мелкодисперсном (распыленном) состоянии реагентов объясняется следующим:
при контакте реагентов в распыленном состоянии менее 0,5 с происходит неполное разложение сульфит-бисульфита аммония в зоне разложения (первая зона), доразложение его происходит в зоне достижения равновесного состояния между жидкостью и газом (вторая зона), вследствие этого во второй зоне не достигается равновесия между сульфатом аммония и 100%-ным диоксидом серы, и в выходящем из третьей зоны десорбции аппарата растворе сульфата аммония увеличивается содержание растворенного диоксида серы.

Для осуществления процесса контакта реагентов в распыленном состоянии (более 1,0 с) требуется увеличение объема первой зоны аппарата, что ведет к снижению интенсивности процесса в аппарате. При этом технологические показатели процессов полнота разложения и десорбции остаются такими же, как и при времени контакта 0,5-1,0 с.

На чертеже изображена принципиальная технологическая схема способа.

Для осуществления процесса применяются горизонтальный аппарат 1 со специальным смесительным устройством (смесителем) 2, предназначенным для подачи в аппарат раствора сульфит-бисульфит аммония и серной кислоты, интенсивного смешивания реагентов и распыления смеси, системой перегородок 3,4,5,6, образующих зоны процесса, патрубками 7,8, предназначенными для вывода влажного 100% -ного диоксида серы и сульфата аммония, и вертикальный аппарат 9, снабженный патрубками 10, 11 для ввода и вывода сульфата аммония, патрубками 12, 13 для ввода и вывода воздуха и насадкой 14.

В аппаратах 1 и 9 размещены три зоны процесса: первая реакционная зона, вторая зона достижения равновесия между жидкой фазой и газом, третья зона десорбции. В первой зоне за счет использования смесителя 2 обеспечиваются интенсивный процесс взаимодействия сульфит-бисульфита аммония с серной кислотой и десорбция диоксида серы из раствора. Смеситель 2 представляет собой две трубы, установленные коаксиально (одна в другую). Во внутреннюю трубу подается серная кислота, а в наружную раствор сульфит-бисульфита аммония. Соотношение диаметров обеих труб, наружного к внутреннему равно, 1,7-1,5;1. Серная кислота по внутренней трубе падает на специальный отбойник (представляющий собой конус с прямым углом в вершине), установленный на площадке диаметром, равным двум диаметрам основания конуса, и в виде мелкодисперсных частиц разбрызгивается во все стороны. Раствор сульфит-бисульфита аммония по кольцевому зазору падает на отбойник, кольцеобразной пленкой встречая на пути разлетающиеся во все стороны мелкие капли серной кислоты разрывающие пленку. При этом осуществляются эффективнее контакт двух реагирующих жидкостей в мелкодисперсном состоянии, интенсивное их смешение и взаимодействие по реакции 2NН4НSО324=(NН4)24+2SО22O (NН4)2324= (NН4)24+SО22О Сульфит-бисульфит аммония и серная кислота подаются в смеситель в стехиометрическом соотношении по указанным реакциям с избытком серной кислоты 2% Выделяющееся тепло реакции интенсифицирует протекание процессов разложения реагентов и одновременно десорбции из мелких капель смеси диоксида серы в газовую фазу вследствие высокоразвитой поверхности частиц реакционной смеси.

В первой зоне, таким образом, обеспечиваются во время нахождения реакционной смеси в распыленном состоянии в течение 0,5-1,0 с интенсивный контакт реагентов и почти полное протекание процесса разложения сульфит-бисульфита аммония серной кислотой.

Во второй зоне раствор сульфата проходит под перегородками 3, 5 и над перегородками 6, 4. Перегородки 3, 5 имеют высоту, равную половине высоты аппарата. В них имеются внизу отверстия для прохода жидкости. Перегородки 4, 6 имеют высоту, равную одной трети высоты аппарата, и обеспечивают определенный уровень жидкости в аппарате. При прохождении раствора во второй зоне он подогревается острым паром через патрубок 15 и барботер 16, и из раствора выделяется газообразный диоксид серы, который барботирует раствор сульфата аммония. В результате барботажа и подогрева острым паром раствор сульфата аммония на выходе из второй зоны достигает равновесного состояния между жидкостью и газом, и количество диоксида серы в сульфате аммония определяется РН и температурой раствора. В третьей зоне (башне с насадкой 9) раствор сульфата аммония продувается небольшим количеством воздуха и затем может передаваться в другое производство или на склад. Продувочный воздух со следами диоксида серы может быть направлен в промывное отделение производства серной кислоты или подвергнут очистке растворами сульфит-бисульфита аммония и вновь направлен в десорбер, а растворы сульфит-бисульфита аммония, полученные на стадии очистки, направлены на разложение до сульфата аммония.

П р и м е р 1. Через смеситель 2 в аппарат разложения подают 7191 кг/ч рабочего раствора сульфит-бисульфит аммония, в том числе бисульфита аммония 4311 кг/ч, сульфита аммония 97 кг/ч, сульфата аммония 250 кг/ч, воды 2533 кг/ч и 93%-ную серную кислоту в количестве 2381 кг/ч, в том числе серной кислоты 2215 кг/ч и воды 166 кг/ч.

При смешивании во взвешенном состоянии реагентов в течение 0,5-1,0 с происходит разложение сульфит-бисульфита аммония с образованием диоксида серы и раствора сульфата аммония. Во второй зоне продолжается выделение из раствора в газовую фазу 100% диоксида серы, который вместе с парами воды выводится из аппарата в количестве 3885 кг/ч, из них 100% диоксида серы 2835 кг/ч и паров воды 1050 кг/ч. Из третьей зоны из аппарата выводится образовавшийся раствор сульфата аммония в количестве 8448 кг/ч, в том числе сульфата аммония 3379 кг/ч и воды 5069 кг/ч. В растворе содержание диоксида серы составляет 0,064% Расход пара 170,1 кг/ч, т.е. 170,1/2,835=60 кг/т SО2.

Интенсивность процесса получения 100% диоксида серы в аппарате разложения составляет 750 т SО23 год. Другие примеры при тех же количествах реагирующих растворов приведены в табл.1. Из табл.1 видно, что при уменьшении температуры ниже заявленного интервала температур резко возрастает содержание растворенного диоксида серы в растворе сульфата аммония, и снижается интенсивность процесса, а при увеличении температуры выше заявленного интервала температур возрастает расход пара без заметного изменения технологических параметров процесса.

Из табл.1 также видно, что при уменьшении времени контакта реагентов во взвешенном состоянии резко увеличивается содержание растворенного диоксида серы в выводимом из аппарата растворе сульфата аммония, а при увеличении времени контакта снижается интенсивность процесса (так как для этого требуется увеличение объема аппарата первой зоны) без заметного улучшения технологических параметров процесса.

В пределах заявленных интервалов температур и времени контакта достигаются оптимальные условия реализации способа.

В табл. 2 приведены сравнения технологических показателей заявленного способа и существующего прототипа.

Таким образом, использование заявленного способа получения диоксида серы по сравнению с существующим прототипом позволяет получить 100% диоксид серы (требующийся для целого ряда производств) с высокой степенью интенсивности процесса разложения сульфит-бисульфита аммония (в растворе) до 7500 т SО23 год с одновременным получением раствора сульфата аммония с содержанием растворенного диоксида серы менее 0,1% что значительно (почти в двадцать раз) уменьшает его потери и улучшает экологические условия при дальнейшей переработке этого раствора (например, в производстве экстракционной фосфорной кислоты). Кроме того, значительно уменьшаются капитальные затраты на изготовление и монтаж аппарата разложения (значительно меньший объем), резко уменьшается энергоемкость процесса, т.к. почти в 2,5 раза снижаются удельный расход пара и температура в аппарате при увеличении интенсивности процесса.

Похожие патенты RU2050315C1

название год авторы номер документа
Способ получения высококонцентрированного диоксида серы 1986
  • Муравьев Евгений Васильевич
  • Тараторкин Владимир Васильевич
  • Буданцев Владимир Иванович
  • Воеводин Владимир Иванович
  • Куликова Валентина Михайловна
  • Андреев Владимир Яковлевич
  • Рябов Владимир Анатольевич
  • Суркова Ангелина Прокопьевна
  • Любушкин Владимир Петрович
SU1375561A1
Способ получения высококонцентрированного диоксида серы 1983
  • Новиков Анатолий Артемьевич
  • Муравьев Евгений Васильевич
  • Тараторкин Владимир Васильевич
  • Ражев Владимир Михайлович
  • Гзовский Александр Степанович
  • Буданцев Владимир Иванович
  • Куликова Валентина Михайловна
  • Добромыслова Нелля Семеновна
  • Решетов Юрий Александрович
  • Будник Вадим Петрович
  • Крышковец Евгений Алексеевич
  • Ярмаркин Юрий Васильевич
  • Мешков Виктор Петрович
SU1154203A1
СПОСОБ ПОЛУЧЕНИЯ УДОБРЕНИЙ И СОЕДИНЕНИЙ СЕРЫ 1998
  • Эял Аарон Меир
RU2201413C2
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИТ-БИСУЛЬФИТНЫХ РАСТВОРОВ 2000
  • Дмитревский Б.А.
  • Треущенко Н.Н.
  • Дремов А.В.
  • Юрьева В.И.
  • Иванова Н.Я.
  • Николенко Т.В.
RU2174954C1
СПОСОБ ПЕРЕРАБОТКИ БЕДНЫХ МАРГАНЦЕВЫХ РУД, ШЛАМОВ И ПЫЛИ ФЕРРОСПЛАВНЫХ ЭЛЕКТРОПЕЧЕЙ 2002
  • Свенцицкий А.Т.
  • Носенков А.Н.
  • Трунев С.В.
  • Дмитревский Б.А.
  • Треущенко Н.Н.
  • Юрьева В.И.
  • Иванова Н.Я.
RU2213155C1
НОВОЕ АБСОРБИРУЮЩЕЕ СРЕДСТВО И СПОСОБ ВЫДЕЛЕНИЯ ДИОКСИДА СЕРЫ ИЗ ГАЗОВОГО ПОТОКА С ИСПОЛЬЗОВАНИЕМ ДАННОГО СРЕДСТВА 2022
  • Генкин Михаил Владимирович
  • Шабалин Дмитрий Александрович
  • Игумнов Сергей Николаевич
RU2787119C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ 1992
  • Саенко Николай Дмитриевич
RU2091298C1
Способ переработки отработанной серной кислоты 1991
  • Белов Анатолий Анатольевич
  • Когтев Сергей Евгеньевич
  • Никандров Игорь Семенович
SU1803380A1
СПОСОБ ОЧИСТКИ КИСЛОРОДСОДЕРЖАЩИХ ГАЗОВ ОТ ДИОКСИДА СЕРЫ 1988
  • Кундо Н.Н.
  • Ермакова А.[Hu]
  • Пай З.П.
  • Лукьянов Б.Н.
  • Кириллов В.А.
  • Замараев К.И.
  • Пармон В.Н.
  • Орлов В.А.
  • Богомазов В.М.
  • Козюра А.И.
  • Данилов Л.И.
  • Филатов А.В.
  • Колесников Б.И.
  • Митрофанов В.Б.
SU1823379A1
СПОСОБ ВЫЩЕЛАЧИВАНИЯ ЦЕННЫХ МЕТАЛЛОВ ИЗ РУДЫ В ПРИСУТСТВИИ ХЛОРИСТОВОДОРОДНОЙ КИСЛОТЫ 2005
  • Смит Ян-Тьерд
  • Стейл Йоханн-Дю-Тойт
RU2395594C2

Иллюстрации к изобретению RU 2 050 315 C1

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОНЦЕНТРИРОВАННОГО ДИОКСИДА СЕРЫ

Использование: в химической промышленности при очистке газов от SO2 в производстве моющих средств, сульфанола, гидросульфита натрия. Способ заключается в разложении раствора сульфит-бисульфита аммония серной кислотой с последующей десорбцией выделившегося диоксида серы. Процесс разложения в высокодисперсном состоянии исходных реагентов ведут при времени контакта их 0,5-1,0 с с последующими нагреванием реакционной смеси до 65-75°С и десорбцией диоксида серы воздухом. Применение способа позволяет получить 100%-ный диоксид серы при снижении содержания диоксида серы в сульфате аммония с 2,0 до 0,1% а также снизить энергозатраты на нагрев в реакционной смеси в 2,5 раза. 1 ил. 2 табл.

Формула изобретения RU 2 050 315 C1

СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОНЦЕНТРИРОВАННОГО ДИОКСИДА СЕРЫ из раствора сульфит-бисульфита аммония, включающий разложение его серной кислотой при нагревании на диоксид серы и сульфат аммония с последующей десорбцией диоксида серы, отличающийся тем, что, с целью обеспечения возможности получения 100% -ного диоксида серы и снижения содержания его в сульфате аммония, а также снижения энергозатрат, процесс разложения ведут в высокодисперсном состоянии исходных реагентов при времени контакта их 0,5-1,0 с последующим нагревом реакционной смеси до 65-75oС.

Документы, цитированные в отчете о поиске Патент 1995 года RU2050315C1

Васильев Б.Т., отвагина М.И
Технология серной кислоты
М.: Химия, 1985, с.221.

RU 2 050 315 C1

Авторы

Тараторкин В.В.

Васильев Б.Т.

Ражев В.М.

Муравьев Е.В.

Крышковец Е.А.

Шлычкова В.М.

Макаров В.П.

Даты

1995-12-20Публикация

1990-03-20Подача