Изобретение относится к электронной технике и может быть использовано в вакуумных приборах и электрофизических установках с высоким напряжением.
Известны высоковольтные вакуумные приборы с электродами, изготовленными из металлических болванок путем обработки их на станках, штамповки из металлического листа или прессования из порошкового материала. Эти электроды обеспечивают низкие электрические прочности вакуумной изоляции и заметные плотности токов появляются при напряженности внешнего поля 5 · 104 1 · 105 В/см. Для улучшения характеристик вакуумной изоляции эти высоковольтные электроды подвергаются химической полировке или электрополировке, т.е. используются экологически вредные технологии. Лучший эффект можно достичь после облучения высоковольтных электродов ионами инертных газов [1] Однако этот вид обработки довольно трудоемкий, требует сложного оборудования и, более того, низкотемпературный нагрев электродов снижает этот эффект до нуля.
Известны высоковольтные вакуумные приборы, электроды которых анод и катод изготовлены из порошкового материала с регулярными парами. Однако после их изготовления используют те же технологии полировку и электрополировку [2] Они обеспечивают низкий уровень электрической прочности вакуумной изоляции вследствие ионизационных процессов в микропорах поверхности высоковольтных электродов, которые создают предпробойные явления и пробой вакуума.
Цель изобретения повышение электрической прочности вакуумной изоляции достигается тем, что частицы порошкового материала имеют поры размером порядка единиц микрон, а их диаметр ≥300 мкм.
В этом случае ослабляется влияние ионизационных процессов в микропорах. При указанном выше способе изготовления между частицами диаметром ≥ 300 мкм на поверхности электрода создаются поры порядка сотен микрон. Создаваемое давление газа при десорбции его с поверхности пор находится далеко от максимума зависимости предпробойных явлений и пробоя вакуума от давления газа в порах.
При размерах частиц диаметром ⊘ ≥ 300 мкм ослабляется электрическое поле, провисающее в пору, по сравнению с условием, когда стенки пор перпендикулярны поверхности электрода. Ослабление электрического поля способствует снижению процессов ионизации в порах.
Заявленная геометрия поверхности была выбрана экспериментально, исходя из полученных результатов по исследованию характеристик вакуумной электроизоляции с пористыми высоковольтными электродами.
На фиг. 1, 2 показан предлагаемый прибор.
Высоковольтные электроды 1, 2 изготовлены из порошкового материала методом прессования. Поверхности электродов, обращенные друг другу, изготовлены из частиц диаметром 350 ± 50 мкм, которые образуют поры размером сотни микрон, а размер пор в частицах диаметром порядка 5 ∓ 4 мкм. Электроды были выполнены в виде плоских пластинок размером 12 х 32 мм и поставлены друг против друга крестообразно, что отвечает условиям многих действующих высоковольтных установок (ускорительных трубок, анализаторов и т.д.).
На фиг. 3а показано изменение предпробойных токов во времени; на фиг. 3б соответствующее напряжение, при котором фиксировался ток, для предлагаемых электродов. Выбранный параметр вакуумной электроизоляции наиболее надежно характеризует ее электрическую прочность.
На фиг. 4а показано изменение предпробойных токов во времени; на фиг. 4б соответствующее напряжение, при котором фиксировался ток для прототипа.
Сравнение фиг. 3 и 4 показывает, что электрическая прочность предлагаемых электродов значительно выше, чем у прототипа (вакуумный промежуток 1 мм).
Для предлагаемых электродов (фиг. 3а) уровень предпробойных токов в течение 10 ч был менее 1 мкА при напряжении 30-35 кВ и затем к 65 ч он увеличился до 30 мкА. Микроразрядов не наблюдалось.
Для известных электродов (фиг. 4а) через 5 ч предпробойный ток увеличился до 70 мкА, появились микроразряды при 30 кВ. Тренировка микропробоями (она отмечена штриховой линией) снизила токи, однако при дальнейшей выдержке при 30 кВ ток возрос за 5 ч уже до 200 мкА и последующая тренировка практически не улучшила электрическую прочность: предпробойные токи резко возрастали. Тренировка микропробоями не всегда возможна в действующих установках.
Сравнение электрической прочности по другому параметру напряжению появления микроразрядов было также в пользу предлагаемых электродов 37-40 кВ, для прототипа 27-28 кВ.
Таким образом, предлагаемые электроды обеспечивают более высокую электрическую прочность вакуумной электроизоляции без использования экологически вредных обработок (химической полировки и электрополировки).
название | год | авторы | номер документа |
---|---|---|---|
Способ обработки отрицательных электро-дОВ элЕКТРОВАКууМНыХ уСТРОйСТВ | 1979 |
|
SU843021A1 |
СПОСОБ ОБРАБОТКИ ЭЛЕКТРОДОВ ИЗОЛИРУЮЩИХ ПРОМЕЖУТКОВ ВЫСОКОВОЛЬТНЫХ ЭЛЕКТРОВАКУУМНЫХ ПРИБОРОВ | 2008 |
|
RU2384911C1 |
СПОСОБ ТРЕНИРОВКИ ВАКУУМНЫХ ГЕРКОНОВ | 2023 |
|
RU2814467C1 |
СПОСОБ СНИЖЕНИЯ ПАРАЗИТНЫХ ПРЕДПРОБОЙНЫХ ТОКОВ В ВАКУУМНЫХ ВЫСОКОВОЛЬТНЫХ ПРОМЕЖУТКАХ | 2005 |
|
RU2287872C1 |
ВЫСОКОВОЛЬТНЫЙ ЭЛЕКТРОННЫЙ ПРИБОР | 2010 |
|
RU2418339C1 |
СПОСОБ ПОВЫШЕНИЯ ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ ВАКУУМНОЙ ИЗОЛЯЦИИ | 2004 |
|
RU2276425C1 |
Способ очистки жидких инертных газов от электроотрицательных примесей | 1978 |
|
SU708561A1 |
Способ высоковольтной тренировки отпаянного электровакуумного прибора с металлопористыми катодами | 2017 |
|
RU2656147C1 |
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОИМПУЛЬСНОГО НАНЕСЕНИЯ ПОКРЫТИЙ | 2001 |
|
RU2216411C2 |
Способ обработки электродов изолирующих промежутков высоковольтных электровакуумных приборов | 2017 |
|
RU2665315C1 |
Использование: в электронной технике, а также в других областях науки и техники, где используется вакуумная электроизоляция. Сущность изобретения: высоковольтные вакуумные электроды выполнены из порошкового материала таким образом, что имеют регулярные поры, образованные пустотами между частицами материала диаметром ≥ 300 мкм. Это позволяет увеличить электрическую прочность вакуумной электроизоляции без использования традиционных экологических вредных технологий - химической полировки и электрополировки. Предлагаемая микроструктура поверхности высоковольтных электродов позволяет ослабить влияние ионизационных процессов в микропорах, которые существенным образом влияют на характеристики вакуумной электроизоляции при низких напряженностях внешнего поля. 4 ил.
ВЫСОКОВОЛЬТНЫЙ ВАКУУМНЫЙ ПРИБОР, содержащий катод и анод из частиц порошкового материала с регулярными порами, отличающийся тем, что частицы порошкового материала имеют поры размером порядка единиц микрон, а их диаметр ≥ 300 микрон.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
R | |||
Latham | |||
Паровоз для отопления неспекающейся каменноугольной мелочью | 1916 |
|
SU14A1 |
Santa - Fe, 1990, с.8-12 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Тезисы XXI Всесоюзной конференции по эмиссионной электронике | |||
Т | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1996-02-20—Публикация
1992-09-21—Подача