Изобретение относится к неорганической химии, в частности к пенокерамическим материалам на основе карбида кремния, которые могут быть использованы в качестве носителей для катализаторов, фильтров для нагретого газа, пористых электродов.
Известен способ изготовления пористого углеродного материала, состоящего из отформованной и карбонизированной в неокислительной атмосфере смеси полых углеродных микросфер со связующим, например фенольными, фурфуроловыми, эпоксидными смолами, крахмалом, взятым в количестве 4-40% от объема микросфер [1] (прототип).
Данный пенокарбидный материал имеет небольшой удельный вес (плотность 0,05-1,00 г/см3), удовлетворительную механическую прочность (прочность на сжатие 0,5-50 МПа), однако обладает низкой электропроводностью (1,6-35 (Ом·м)-1), что делает невозможным его использование в качестве пористых электродов (например, в литиевых аккумуляторах).
Перед авторами стояла задача получить пенокерамический материал, обладающий требуемым комплексом физико-механических характеристик, а именно высокими электропроводностью, механической прочностью, низкой плотностью.
Поставленная задача решается путем использования шихты для получения пенокерамического материала, содержащей углеродные микросферы, жидкое карбонизующееся связующее и дополнительно мелкодисперсный порошок кремния в следующем соотношении, мас. Углеродные микрос- феры 5-20 Жидкое карбонизую- щееся связующее 15-30 Мелкодисперсный порошок кремния 50-80
Количество исходных компонентов определяется необходимостью получения конечного продукта нужного фазового и химического состава. Заданный фазовый и химический состав конечного продукта определяется стехиометрическим соотношением количеств металлического кремния и углерода (углеродных микросфер и связующего). Нужная пористость задается введением в шихту углеродных микросфер определенного размера. Только заявленный интервал значений компонентов шихты обеспечивает получение пенокерамического материала с требуемым комплексом физико-механических свойств. Например, увеличение содержания связующего свыше 30 мас. следовательно, уменьшение содержания углеродных микросфер приводит к потере пористости материала, повышению его хрупкости и ухудшению важнейших свойств, присущих пенокерамическим материалам. Недостаток связующего (меньше 15 мас.) приводит к сверхнормативному увеличению количества микросфер. В результате не происходит связывания компонентов шихты, что обусловливает в конечном счете катастрофическое снижение прочности материала.
В настоящее время из патентной и научно-технической литературы не известна шихта для получения пенокерамического материала, содержащая мелкодисперсный порошок кремния, жидкое карбонизующееся связующее, углеродные микросферы в заявленных интервалах значений.
Способ приготовления пенокерамического материала из предлагаемой шихты следующий.
Готовят шихту, состоящую из мелкодисперсного порошка кремния 50-80 мас. жидкого карбонизующегося связующего 15-30 мас. и углеродных микросфер 5-20 мас. Из полученной шихты прессуют (формуют) изделия при давлении Р 0,5-1,5 МПа, отверждают их при температуре 150-160оС, карбонизуют со скоростью 100оС до температуры 800оС с последующей выдержкой при этой температуре до полной карбонизации (1-2 ч в зависимости от толщины (объема) изделия).
Затем продолжают нагрев в форвакууме до температуры карбидизации (1500-1700оС) с последующей выдержкой при этой температуре в течение 0,5-6 ч и медленно охлаждают.
При карбонизации жидкое карбонизующееся связующее переходит в углерод, получают пеноуглерод с равномерно распределенным металлом. Последующая термообработка пеноуглерода с введенным порошком металлического кремния приводит к карбидизации введенного металла с образованием карбида кремния SiC. Реакция восстановления углеродом оксидов металлов в карбиды известна, однако в литературе не встречаются сведения об образовании карбида металла из металлического порошка на углеродной микросфере.
Полученный продукт исследуют рентгенографическим, химическим и электронно-микроскопическим методами анализа, измеряют его плотность, электропроводность, предел прочности при сжатии и другие физико-механические свойства. На основании результатов химанализа рассчитывают брутто-состав.
Изобретение иллюстрируется следующими примерами.
П р и м е р 1.
Готовят шихту, состоящую из мелкодисперсного порошка кремния в количестве 50 мас. фенолформальдегидной смолы 30 мас. и углеродных микросфер 20 мас.
Из полученной композиции прессуют изделие при давлении Р 1 МПа, отверждают его при температуре 150-160оС, карбонизуют со скоростью 100оС/ч до температуры 800оС и выдерживают при этой температуре в течение 2 ч (изделие толщиной 100 мм). Карбидизацию ведут в форвакууме при 1700оС в течение 6 ч и затем медленно охлаждают. Получают пенокарбид кремния со следующими физико-механическими характеристиками: плотность 0,71 г/см3, электропроводность κ 15,3 (Ом·м)-1, предел прочности при сжатии 6 МПа, пористость до 95%
П р и м е р 2.
То же, что в примере 1, но шихту готовят из 64 мас. мелкодисперсного порошка кремния, 23 мас. фурановой смолы и 13 мас. углеродных микросфер, прессование проводят при давлении Р 0,5 МПа, выдержку при температуре 800оС осуществляют в течение 1 ч (изделие толщиной 30 мм), карбидизацию в форвакууме проводят при 1600оС в течение 2 ч.
Получают пенокарбид кремния со следующими характеристиками: плотность 0,85 г/см3, электропроводность κ= 500 (Ом·м)-1, предел прочности при сжатии 14 МПа, пористость до 95%
П р и м е р 3.
То же, что в примере 1, но шихту готовят из 80 мас. мелкодисперсного порошка кремния, 15 мас. фенолформальдегидной смолы, 5 мас. углеродных микросфер, прессуют при давлении Р 1,5 МПа, карбидизацию в форвакууме проводят при температуре 1500оС с 0,5-часовой выдержкой. Получают пенокарбид кремния, имеющий плотность 0,92 г/см3, электропроводность κ= 600 (Ом·м)-1, предел прочности при сжатии 25 МПа, пористость до 95%
Таким образом, предлагаемая шихта для получения пенокерамического материала позволяет:
повысить электропроводность материала по сравнению с прототипом в сотни раз;
получить пенокерамический материал, обладающий требуемым комплексом физико-механических свойств: высокой электропроводностью, механической прочностью, низкой плотностью;
расширить номенклатуру электропроводящих пенокерамических материалов.
название | год | авторы | номер документа |
---|---|---|---|
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ПЕНОКЕРАМИЧЕСКОГО МАТЕРИАЛА | 1991 |
|
RU2057740C1 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ПЕНОКЕРАМИЧЕСКОГО МАТЕРИАЛА (ВАРИАНТЫ) | 1998 |
|
RU2145313C1 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ПЕНОКЕРАМИЧЕСКОГО МАТЕРИАЛА | 2001 |
|
RU2213075C2 |
ИЗНОСОСТОЙКОЕ ПОКРЫТИЕ | 2000 |
|
RU2191217C2 |
СПОСОБ ПОЛУЧЕНИЯ ОКУСКОВАННОЙ ШИХТЫ | 1993 |
|
RU2103386C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ПСЕВДОСПЛАВА ВОЛЬФРАМ-МЕДЬ | 1993 |
|
RU2043861C1 |
ПРОНИЦАЕМЫЙ ЯЧЕИСТЫЙ МАТЕРИАЛ | 1992 |
|
RU2031887C1 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ КОНСТРУКЦИОННОЙ ГЛИНОЗЕМИСТОЙ КЕРАМИКИ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ НЕЕ | 2000 |
|
RU2168483C1 |
СПОСОБ ПОЛУЧЕНИЯ КОРУНДОВОЙ КЕРАМИКИ | 2000 |
|
RU2171244C1 |
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОМЯГКОГО МАТЕРИАЛА | 2009 |
|
RU2413320C1 |
Использование: для получения пенокерамических материалов, применяющихся в качестве носителей для катализаторов, фильтров для нагретого газа, пористых электродов. Сущность изобретения: шихта включает, мас.%: углеродные микросферы 5 - 20; жидкое карбонизующееся связующее 15 - 30; мелкодисперсный порошок кремния 50 - 80. Характеристика: плотность 0,71 - 0,92 г/см3, электропроводность κ 15,3 - 600 (Ом • м)- 1, предел прочности при сжатии 6 - 25 МПа.
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ПЕНОКЕРАМИЧЕСКОГО МАТЕРИАЛА, содержащая углеродные микросферы и жидкое карбонизующееся связующее, отличающаяся тем, что она дополнительно содержит мелкодисперсный порошок кремния при следующем соотношении компонентов, мас.%:
Углеродные микросферы - 5 - 20
Жидкое карбонизующееся связующее - 15 - 30
Мелкодисперсный порошок кремния - 50 - 80
КАБЕЛЬНАЯ МУФТА | 1996 |
|
RU2110129C1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Авторы
Даты
1996-03-27—Публикация
1991-11-15—Подача