СПОСОБ КОНТРОЛЯ СКОРОСТИ КОРРОЗИОННОГО РАЗРУШЕНИЯ ТРУБОПРОВОДА Российский патент 1996 года по МПК G01N17/00 

Описание патента на изобретение RU2065147C1

Изобретение относится к области непрерывного контроля скорости коррозии трубопроводов и может быть использовано для непрерывного контроля скорости внутренней газовой коррозии подземных канализационных коллекторов из железобетонных труб.

Известен способ контроля скорости коррозионного разрушения трубопроводов, заключающийся в том, что из материала контролируемого трубопровода вырезают кольцевой образец, надевают его на кольцо, создают в образце растягивающее напряжение, помещают образец в сборе с кольцом в среду и по разрушению образца судят о степени коррозионного растрескивания (1).

Недостатком данного способа является невысокая достоверность и использование вредного радиоактивного вещества.

Известен также принятый за прототип способ контроля скорости коррозионного разрушения трубопроводов, заключающийся в том, что в трубопроводе размещают образцы-сигнализаторы, выдерживают их в протекающем по ним потоке агрессивной среды и оценивают коррозионные потери образцов-сигнализаторов, по которым судят о внутренней коррозии трубопровода (2).

Недостатком данного способа является то, что для контроля скорости коррозионного разрушения образцы-сигнализаторы необходимо извлекать из трубопровода и по изменению их толщины оценивать их коррозионные потери. Такой способ не позволяет получать многократные сигналы в течение многих лет работы образца-сигнализатора в трубопроводе, что не обеспечивает достаточной точности определения внутренней коррозии трубопровода в ее динамике.

Техническим результатом изобретения является повышение точности определения скорости коррозии трубопровода путем дистанционного непрерывного измерения количественных и качественных показателей скорости коррозии одновременно по всей толщине трубопровода.

Указанный технический результат достигается тем, что в способе контроля скорости коррозионного разрушения трубопроводов, заключающемся в том, что в трубопроводе размещают образцы-сигнализаторы, выдерживают их в протекающем по нему потоке агрессивной среды и оценивают коррозионные потери образца -сигнализатора, по которым судят о внутренней коррозии трубопровода, внутри образца, выполненного в форме куба, размещают соосно с ним сигнализатор, который выполняют путем чередования слоев токопроводящего материала и нетокопроводящих слоев, выполненных из того же материала, что и стенки трубопровода или его отделка, длину грани кубического образца принимают равной удвоенной суммарной высоте сигнализатора, причем суммарную высоту сигнализатора определяют по формуле

где h суммарная высота сигнализатора
h0 толщина стенки трубопровода или его отделки
Kз.п. запас прочности трубопровода,
а соответствующие кратчайшие расстояния каждого из токопроводящих слоев как от основания куба, так и до его боковых сторон равны и определяются по формуле

где lm толщина стенки трубопровода или его отделки
m порядковый номер токопроводящего слоя сигнализатора от основания образца
n общее количество слоев сигнализатора.

Сущность изобретения поясняется чертежами, где на фиг.1 изображен вертикальный разрез трубопровода с образцами-сигнализаторами, на фиг.2 - образец-сигнализатор, на фиг.3 горизонтальный разрез образца-сигнализатора.

Способ осуществляют следующим образом.

В трубопроводе 1 размещают образцы-сигнализаторы 2, причем внутри образца, выполненного в форме куба, размещают соосно с ним сигнализатор, который выполняют путем чередования слоев токопроводящего материала 3 и нетокопроводящих слоев 4, выполненных из того же материала, что и стенки трубопровода 1 или его отделка, длину грани кубического образца принимают равной удвоенной суммарной высоте сигнализатора, причем суммарную высоту сигнализатора определяют по формуле

где h суммарная высота сигнализатора
h0 толщина стенки трубопровода или его отделки
Kз.п. запас прочности трубопровода.

Слой токопроводящего слоя 3, в качестве которого может быть использована легкоразрушаемая от коррозии и имеющая устойчивые электрические параметры тонкая константановая проволока, подключают к кабелю 5.

Причем соответствующие кратчайшие расстояния каждого из токопроводящих слоев 3 как от основания куба, так и до его боковых сторон равны и определяются по формуле

где lm толщина стенки трубопровода или его отделки
m порядковый номер токопроводящего слоя сигнализатора от основания образца
n общее количество слоев сигнализатора.

Затем выдерживают образцы-сигнализаторы 2 в протекающем по ним потоке агрессивной среды 6 и оценивают коррозионные потери образцов-сигнализаторов по сигналам, поступающим с них по мере разрушения очередного из слоев на контрольно-измерительную аппаратуру, в качестве которой может быть использован любой стандартный измеритель, например омметр; по сигналам, полученным с контрольно-измерительной аппаратуры, судят о внутренней коррозии трубопровода на данный момент времени.

Образцы-сигнализаторы подвешивают в трубопроводе на крючке 7.

Пример выполнения способа контроля скорости коррозионного разрушения трубопровода.

Осуществляется контроль скорости коррозионного разрушения канализационного коллектора диаметром 2000 мм, толщиной отделки 300 мм и коэфф. запаса прочности Кз.п. 3,0.

По формулам (1), (2), (3) определяют геометрические параметры образца.

, H 200 мм
Количество слоев принимают равным n 10.

Расстояния от токопроводных слоев 3 до горизонтальных краев образца-сигнализатора 2 вычисляются по формуле (2).

Бетонирование образца-сигнализатора производится в стандартной кубической форме с размерами 200 х 200 х 200 мм. Марка бетона должна соответствовать марке бетона отделки коллектора.

Укладку бетона в кубическую форму производят вручную.

После бетонирования первого слоя с толщиной 10 мм и 3-4-часовой паузы на первый слой бетона укладывают токопроводный легкоразрушаемый от коррозии и имеющий устойчивые электрические параметры материал, например константановую тонкую проволоку, производится ее подключение к многожильному кабелю в бетонируемом пространстве. После чего укладывается второй слой бетона и повторяется весь цикл до полного бетонирования всех слоев, далее доукладывают бетон в форму и вставляют сверху короткий крючок для подвешивания на стенки коллектора.

После 28-дневного твердения образца-сигнализатора производится снятие электрических параметров со всех токопроводных слоев. Образец-сигнализатор устанавливается в коллекторе на исследуемом участке. Кабель выводится на измерительный пульт. Производится одновременная регистрация электрических параметров со всех токопроводящих слоев образца-сигнализатора.

Повышение электрического сопротивления токопроводного слоя свидетельствует о наличии активного коррозионного явления в слое бетона и о начале разрушения самого токопроводного слоя.

Резкое увеличение электрического сопротивления электропроводного слоя приведет к прекращению сигнала, что свидетельствует о полном разрушении 10 мм бетонного слоя образца-сигнализатора и, следовательно, отделки коллектора.

Использование предлагаемого способа контроля скорости коррозионного разрушения трубопроводов позволит повысить точность определения скорости коррозии трубопровода путем непрерывного дистанционного измерения количественных и качественных показателей скорости коррозии одновременно по всей толщине трубопровода.

Систематическая регистрация показаний с образцов-сигнализаторов, установленных на участках, потенциально опасных с точки зрения газовой коррозии, позволит определить начало коррозионных процессов, их динамику развития по всей толщине отделки и принять меры для их ликвидации.

Похожие патенты RU2065147C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ ЗА СКОРОСТЬЮ РАЗРУШЕНИЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ СООРУЖЕНИЙ ОТ КОРРОЗИИ 1999
  • Шатирян С.Н.
RU2156452C1
СПОСОБ ЗАЩИТЫ ОТ КОРРОЗИИ 1994
  • Шатирян С.Н.
RU2075542C1
ПЛАКИРОВАННЫЙ СТАЛЬНОЙ СОРТОВОЙ ПРОКАТ ДЛЯ АРМИРОВАНИЯ БЕТОНА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2001
  • Востриков В.П.
  • Грамотнев К.И.
  • Чернышев В.Н.
  • Садовский А.В.
  • Востриков П.В.
RU2206631C2
СПОСОБ ИССЛЕДОВАНИЯ КОРРОЗИИ ВНУТРЕННИХ ПОВЕРХНОСТЕЙ ТРУБОПРОВОДОВ И ЦИЛИНДРИЧЕСКИХ СОСУДОВ 2005
  • Цинман Адам Ицых-Меерович
  • Войтех Николай Дмитриевич
  • Аджиев Али Юсупович
RU2300093C1
СПОСОБ ПРОГНОЗИРОВАНИЯ АВАРИЙНОГО ТЕХНИЧЕСКОГО СОСТОЯНИЯ ТРУБОПРОВОДА КАНАЛИЗАЦИОННОЙ СИСТЕМЫ 2012
  • Кинебас Анатолий Кириллович
  • Васильев Борис Викторович
  • Трухин Юрий Александрович
  • Рублевская Ольга Николаевна
  • Мурашев Сергей Владимирович
  • Ромодин Кирилл Михайлович
  • Васильев Виктор Михайлович
  • Васильев Федор Викторович
  • Рибун Анна Викторовна
RU2508535C2
СПОСОБ РЕМОНТА ПРЕССОВАННОЙ БЕТОННОЙ ОБДЕЛКИ МЕТРОПОЛИТЕНА 2010
  • Шилин Андрей Александрович
  • Гапонов Виталий Владимирович
  • Аксельрод Евсей Зеликович
  • Заломов Сергей Сергеевич
RU2433270C1
СПОСОБ ЩИТОВОЙ ПРОХОДКИ ТОННЕЛЯ 1997
  • Шилин А.А.
RU2114995C1
СПОСОБ ЩИТОВОЙ ПРОХОДКИ ТОННЕЛЯ 2008
  • Шилин Андрей Александрович
  • Картузов Дмитрий Валерьевич
RU2383738C2
СПОСОБ СВАРКИ ЭМАЛИРОВАННЫХ ТРУБ 2001
  • Риккер В.И.
  • Стеклов О.И.
  • Жиляков А.Н.
RU2202457C1
МНОГОХОДОВЫЙ ТЕПЛООБМЕННИК 1993
  • Молодкин А.Б.
  • Чернов Б.С.
  • Дроздов В.Н.
  • Одношивкин Н.П.
RU2084794C1

Иллюстрации к изобретению RU 2 065 147 C1

Реферат патента 1996 года СПОСОБ КОНТРОЛЯ СКОРОСТИ КОРРОЗИОННОГО РАЗРУШЕНИЯ ТРУБОПРОВОДА

Сущность изобретения: в трубопроводе размещают образцы-сигнализаторы в форме куба, внутри которого путем чередования слоев токопроводящего материала и нетокопроводящих слоев из того же материала, что и стенки трубопровода или его обделка, выполняют сигнализатор. Суммарную толщину h сигнализатора определяют по формуле h = h0/Kзп, где h0 - толщина стенки трубопровода или его обделки, Кзп - коэффициент запаса прочности. Соответствующие кратчайшие расстояния lm каждого из токопроводящих слоев, как от основания, так и, до его боковых сторон равны и определены по формуле , где m - порядковый номер токопроводящего слоя от основания образца, n - общее количество слоев сигнализатора. При этом длину грани кубического образца принимают равной удвоенной толщине сигнализатора. 3 ил.

Формула изобретения RU 2 065 147 C1

Способ контроля скорости коррозионного разрушения трубопровода, заключающийся в том, что в трубопроводе размещают образцы-сигнализаторы, выдерживают их в протекающем по нему потоке агрессивной среды и оценивают скорость коррозионного разрушения трубопровода, отличающийся тем, что внутри образца, выполненного в форме куба, размещают, соосно с ним, сигнализатор, выполненный путем чередования слоев токопроводящего материала и нетокопроводящих слоев из того же материала, что и стенки трубопровода или его обделки, длину грани кубического образца принимают равной удвоенной толщине сигнализатора, суммарную толщину h сигнализатора определяют по формуле

где ho толщина стенки трубопровода или его обделки;
Кзп коэффициент запаса прочности,
а соответствующие кратчайшие расстояния lm каждого из токопроводящих слоев как от основания куба, так и до его боковых сторон определяют по формуле

где m порядковый номер токопроводящего слоя от основания образца;
n общее количество слоев сигнализатора.

Документы, цитированные в отчете о поиске Патент 1996 года RU2065147C1

Способ контроля степени коррозионного растрескивания трубопроводов 1983
  • Калашников Владислав Алексеевич
  • Кузнецов Вячеслав Федорович
  • Вдовин Владимир Борисович
SU1188595A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ определения внутренней коррозии трубопровода 1981
  • Гетманский Михаил Данилович
  • Худяков Геннадий Георгиевич
  • Рождественский Юрий Германович
  • Низамов Камиль Разетдинович
  • Муров Виль Мухамедьянович
  • Фазлутдинов Ким Саитгареевич
SU1006981A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 065 147 C1

Авторы

Шатирян С.Н.

Даты

1996-08-10Публикация

1993-08-17Подача