СПОСОБ КОНТРОЛЯ СМЕЩЕНИЯ ПОДВИЖНОГО ОБЪЕКТА ОТНОСИТЕЛЬНО ОПОРНОГО НАПРАВЛЕНИЯ Российский патент 1996 года по МПК E21C35/24 

Описание патента на изобретение RU2068091C1

Предлагаемый способ относится к области горного дела, а более конкретно
к лазерным способам контроля смещения подвижного объекта типа горнопроходческого щита относительно опорного направления. Способ может быть использован также для контроля подкрановых путей и линейнопротяженных объектов таких, как корпуса кораблей и ракет, при строительстве высотных зданий и сооружений.

Известен способ контроля смещения, включающий задание опорного направления в виде узкого светового пучка лазерного излучения, установку в заданном месте створа светоприемного устройства в виде плоского полупрозрачного экрана, на котором образуется световое пятно, регистрацию этого пятна телекамерой, нахождение по полученному видеосигналу искомых координат смещения относительно опорного направления [1]
Основным недостатком этого способа является низкая точность контроля положения светового пятна на полупрозрачном экране, вызванная субъективной оценкой человека-оператора.

Известен также способ измерения смещений [2] включающий задание опорного направления в виде потока лазерного излучения, установку в заданных местах створа фотоприемного устройства, содержащего несколько фотоэлементов, расположенных последовательно один за другим по координатным осям Х и Y в плоскости, перпендикулярной опоpному направлению, смещение лазерного луча относительно опорного направления, приведение лазерного луча во вращательное движение вокруг опорного направления так, что в плоскости, перпендикулярной опорному направлению, образуется сканирующая окружность, измерение временных интервалов между выходными импульсами фотоэлементов фотоприемного устройства при их облучении лазерным излучением, определение искомых величин смещения относительно опорного направления как функции времени. При этом должно соблюдаться условие, чтобы за один период сканирования в зону излучения попадало четыре фотоприемных элемента по одному на каждом направлении оси координат Х и Y.

К основным недостаткам этого способа относятся: зависимость диапазона измеряемых величин смещения от размеров фотоприемного устройства, необходимость большого количества фотоприемных элементов, что снижает помехоустойчивость и повышает стоимость устройства, реализующего указанный способ. Снижение точности и достоверности измерений в тех случаях, когда в зону излучения попадает менее чем четыре фотоприемных элемента (3, 2 или 1), поскольку фотоприемные элементы расположены с некоторым промежутком, соизмеримым с диаметром лазерного луча. Кроме того, при работе в дневное время или в условиях высокого уровня фоновой освещенности возникают трудности визуального распознавания информационной зоны, особенно при больших удалениях от лазерного излучателя.

Наиболее близким по технической сущности к предлагаемому способу является способ для измерения поперечных смещений относительно опорного направления, включающий задание опорного направления, формирование лазерной веерообразной плоскости, вращение ее вокруг оси, совмещенной с опорным направлением, регистрацию моментов пересечения лазерной плоскостью трех фотоприемных элементов, расположенных на одной прямой на известном расстоянии друг от друга, определение временных интервалов между моментами пересечения лазерной веерообразной плоскостью первого и второго, второго и третьего фотоприемных элементов, вычисление координат смещения Х и Y фотоприемного устройства относительно опорного направления.

Известный способ имеет существенные недостатки. Первый недостаток проявляется в том, что точность измерения координат по направлениям Х и Y неодинакова, что следует из точностного анализа способа. Второй недостаток состоит в том, что в случае, когда линия положения фотоприемных элементов совпадает с опорным направлением, измерения выполнять нельзя.

Целью предлагаемого способа является повышение точности контроля смещения подвижного объекта относительно опорного направления.

Поставленная цель достигается тем, что контрольные точки на объекте задают в форме вершин треугольника, дополнительно измеряют интервал времени между моментами пересечения лазерной плоскостью третьей и первой контрольных точек, а координаты подвижного объекта вычисляют по выражениям:



где Х, Y текущие координаты смещения подвижного объекта;
Х1Y1, Х2Y2, Х3Y3 координаты первой, второй и третьей контрольных точек;
A, B, C углы треугольника, образованного контрольными точками;

t1, t2, t3 временные интервалы между моментами пересечения лазерной веерообразной плоскости первой и второй, второй и третьей, третьей и первой контрольных точек;
T период вращения лазерной веерообразной плоскости относительно опорного направления;
π=3,1415...
Новыми признаками предложенного способа является:
расположение фотоприемных элементов в контрольных точках системы координат XOY, связанной с подвижным объектом, в углах треугольника с заданными координатами вершин Х1Y1, Х2Y2, Х3Y3 и известными углами A, B, C при вершинах треугольника;
дополнительное выделение временного интервала между моментами пересечения лазерной веерообразной плоскостью фотоприемных элементов, установленных в третьей и первой контрольных точках.

Расположение фотоприемных элементов в контрольных точках системы кооpдинат XOY, связанной с подвижным объектом, в углах треугольника с заданными координатами вершин Х1Y1, Х2Y2, Х3Y3 и известными углами A, B, C при вершинах треугольника позволяет получать одинаковую точность измерения по направлениям координат Х и Y внутри треугольника, образованного контрольными точками.

Дополнительное выделение временного интервала между моментом пересечения третьего и первого фотоприемных элементов, установленных в третьей и первой контрольных точках, лазерной веерообразной плоскостью позволяет по известному периоду вращения лазерной веерообразной плоскости Т определить углы ее поворота γ, a и b между моментами пересечения указанной плоскостью фотоприемных элементов, установленных в контрольных точках на объекте в вершинах треугольника, и рассчитать смещения Х и Y подвижного объекта относительно опорного направления.

Указанными свойствами не обладает ни одно из известных технических решений. Следовательно, заявленный способ обладает существенными отличиями.

На фиг. 1 представлено расположение контролируемого подвижного объекта относительно линии опорного направления О1-O2.

На фиг. 2 представлены основные геометрические соотношения, поясняющие способ контроля смещения подвижного объекта относительно опорного направления.

Способ контроля смещения подвижного объекта относительно опорного направления осуществляют следующим образом. На одном конце задаваемого направления О11 устанавливают источник лазерного излучения 1, который с помощью известных средств [3] создает лазерную веерообразную плоскость 2, которую вpащают вокруг опорного направления О11 с угловой скоростью w так, как это показано на фиг. 1. На подвижном объекте 3, положение которого необходимо контролировать относительно линии опорного направления О11, выбирают прямоугольную систему координат ХОY (фиг. 1 и фиг. 2), в которой в контрольных точках, расположенных в вершинах треугольника, устанавливают три фотоприемных элемента 4, 5, 6. Координаты Х1Y1 первого фотоприемного элемента 4, координаты Х2Y2 второго фотоприемного элемента 5, координаты Х3Y3 третьего фотоприемного элемента 6, установленные в первой, второй и третьей контрольных точках соответственно выбранной системы координат ХОY, предварительно известны. По известным координатам Х1Y1, Х2Y2, Х3Y3 фотоприемных элементов 4, 5, 6 вычисляют или измеряют следующие углы: угол A, образованный прямыми, соединяющими первую и вторую и первую и третью контрольные точки, угол B, образованный прямыми, соединяющими первую и вторую и вторую и третью контрольные точки, угол C, образованный прямыми, соединяющими вторую и третью и третью и первую контрольные точки. При вращении лазерной веерообразной плоскости 2 вокруг опорного направления O1-O1 она последовательно пересекает фотоприемные элементы 4, 5 и 6, которые в момент контакта с указанной веерообразной плоскостью 2 вырабатывают электрические импульсы (фиг. 2), которые поступают для обработки в известное устройство [3] (на чертеже не показано). Известное устройство измеряет следующие временные интервалы: Т, соответствующий периоду вращения лазерной веерообразной плоскости 2 вокруг линии опорного направления О11; временной интервал t1 между моментом регистрации лазерной веерообразной плоскости 2 фотоприемными элементами 4 и 5, пропорциональный углу поворота лазерной веерообразной плоскости 2 на угол g; временной интервал t2 между моментом регистрации лазерной веерообразной плоскости 2 фотоприемными элементами 5 и 6, пропорциональный углу поворота лазерной веерообразной плоскости 2 на угол a; временной интервал t3 между моментом регистрации лазерной веерообразной плоскости 2 фотоприемными элементами 6 и 4, пропорциональный углу поворота лазерной веерообразной плоскости 2 на угол b. Пусть проекция линии опорного направления О11 в системе координат ХОY, связанной с подвижным объектом 3, имеет координаты Х и Y (фиг. 2), которые необходимо определить. Если известны координаты Х1Y1 первого фотоприемного элемента 4, установленного в первой контрольной точке, координаты Х2Y2 второго фотоприемного элемента 5, установленного во второй контрольной точке, координаты Х3Y3 третьего фотоприемного элемента 6, установленного в третьей контрольной точке, в системе координат XOY и углы A, B, C, то по измеренным временным интервалам t1, t2 и t3, пропорциональным углам поворота g, a, b лазерной веерообразной плоскости 2, можно определить координаты Х и Y смещения подвижного объекта 3 относительно опорного направления О11 следующим образом [4, 5]


где

π=3,1415...
В основу предложенного способа контроля смещения подвижного объекта относительно опорного направления О11 положен метод обратной геодезической засечки на плоскости (задача Потенота) [4, 5] Решение указанной задачи Потенота состоит в следующем [4, 5] Пусть в заданной системе координат ХОY известны координаты ХaYa, ХbYb, ХcYc трех точек A, B и C, расположенных в вершинах треугольника. Внутри образованного треугольника ABC расположена точка D, кооpдинаты которой ХdYd необходимо определить. Если измерить угол γ, образованный прямыми AD и DB, угол a, образованный прямыми BD и DC, угол b, образованный прямыми СD и DA, то координаты ХdYd cогласно [4, 5] определяют как:

где Ха, Хb, Хc, Ya, Yb, Yc - координаты данных пунктов
A, B, C в системе координат ХОY;
Pa, Pb, Pc фиктивные грузы, сосредоточенные в вершинах A, B и C соответственно;

A, B, C углы вершин треугольника ABC.

Выполненный анализ точности предложенного способа показывает, что наибольшая точность контроля координат подвижного объекта 3 относительно опорного направления О11 обеспечивается в том случае, если контрольные точки, в которых установлены фотоприемные элементы 4, 5, 6, расположены в вершинах равностороннего треугольника, центр которого совпадает с началом выбранной системы координат ХОY. В этом случае координаты X и Y смещения подвижного объекта определяют с учетом следующих соотношений:

Предложенный способ контроля смещения подвижного объекта относительно опорного направления может найти различное применение при решении технических задач, которые возникают при контроле направления движения горнопроходческих щитов, подкрановых путей и линейнопротяженных объектов, таких как корпуса кораблей, самолетов и ракет. Особенно перспективным предложенный способ может оказаться в военном деле при решении задач, связанных с поражением воздушных и наземных целей, при автоматической стыковке орбитальных объектов или когда необходимо вести самолет по линии глиссады в зоне аэродрома.

Положительный эффект от внедрения предложенного способа выразится в повышении точности контроля смещения подвижного объекта относительно опорного направления.

Предложенное изобретение сделано в связи с выполнением служебного задания.

Похожие патенты RU2068091C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ ИНФОРМАЦИИ В ЛАЗЕРНОМ КОГЕРЕНТНОМ ЛОКАТОРЕ С МАТРИЧНЫМ ФОТОПРИЕМНИКОМ 2007
  • Меньших Олег Фёдорович
RU2354994C1
ЭЛЕКТРОННО-ПРОЕКЦИОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ФОРМЫ И ПЕРЕМЕЩЕНИЙ ПОВЕРХНОСТИ ОБЪЕКТА 1992
  • Кучерюк В.И.
  • Попов А.М.
  • Колесников А.В.
RU2065570C1
СПОСОБ АВТОМАТИЧЕСКОЙ ОРИЕНТАЦИИ В ПРОСТРАНСТВЕ ИСПОЛНИТЕЛЬНОГО ОРГАНА МАШИНЫ С ЧПУ 1988
  • Кане М.М.
  • Резниченко В.И.
RU2009764C1
СПОСОБ ЛАЗЕРНОЙ ЛОКАЦИИ ЗАДАННОЙ ОБЛАСТИ ПРОСТРАНСТВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Вышиваный Иван Григорьевич
  • Галченко Борис Иннокентьевич
  • Израилев Борис Исаакович
  • Перевалов Александр Иванович
  • Ткач Анатолий Яковлевич
RU2375724C1
СТЕРЕОСКОПИЧЕСКИЙ КОГЕРЕНТНЫЙ ДОПЛЕРОВСКИЙ ЛОКАТОР 2016
  • Меньших Олег Фёдорович
RU2627550C1
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ВЗАИМНЫХ ПЕРЕМЕЩЕНИЙ ТРЕХ ОБЪЕКТОВ В ТРЕХ УГЛОВЫХ КООРДИНАТАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Алексеев Виктор Евгеньевич
RU2079103C1
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РАБОЧИМ ОРГАНОМ ИЗБИРАТЕЛЬНОГО ДЕЙСТВИЯ ГОРНОПРОХОДЧЕСКОГО КОМПЛЕКСА 2007
  • Недлин Дмитрий Михайлович
  • Притчин Сергей Борисович
  • Глебов Николай Алексеевич
  • Ваколюк Александр Ярославич
RU2360111C2
МНОГОФУНКЦИОНАЛЬНАЯ ОПТИКО-ЛОКАЦИОННАЯ СИСТЕМА 2005
  • Прилипко Александр Яковлевич
  • Павлов Николай Ильич
  • Левченко Виктор Николаевич
RU2292566C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ ОБЪЕКТА С ПОМОЩЬЮ ОПТИКО-ЭЛЕКТРОННОЙ СИСТЕМЫ И УГОЛКОВОГО ОТРАЖАТЕЛЯ 2014
  • Матвеев Михаил Николаевич
RU2556282C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЙ ДЕФЕКТОВ НА АСФЕРИЧЕСКОЙ ПОВЕРХНОСТИ ОПТИЧЕСКОЙ ДЕТАЛИ (ВАРИАНТЫ) 2015
  • Ларионов Николай Петрович
  • Агачев Анатолий Романович
RU2612918C9

Иллюстрации к изобретению RU 2 068 091 C1

Реферат патента 1996 года СПОСОБ КОНТРОЛЯ СМЕЩЕНИЯ ПОДВИЖНОГО ОБЪЕКТА ОТНОСИТЕЛЬНО ОПОРНОГО НАПРАВЛЕНИЯ

Изобретение относится к горной промышленности, а именно к способам определения смещения подвижного объекта относительно опорного направления, позволяет повысить точность определения смещения. Для этого формируют вращающуюся вокруг опорного направления лазерную веерообразную плоскость. На подвижном объекте измеряют интервалы времени между пересечениями лазерной плоскостью трех контрольных точек, образующих треугольник в плоскости, перпендикулярной опорному направлению с заданными координатами. По измеренным значениям интервалов времени, заданным значениям координат вершин треугольника и его углов определяют текущие координаты подвижного объекта относительно опорного направления. 2 ил.

Формула изобретения RU 2 068 091 C1

Способ контроля смещения подвижного объекта относительно опорного направления, заключающийся в формировании вращающейся вокруг опорного направления лазерной веерообразной плоскости, измерении интервалов времени между моментами пересечения вращающейся лазерной веерообразной плоскостью первой и второй, второй и третьей заданных контрольных точек на подвижном объекте и вычислении координат смещения подвижного объекта, отличающийся тем, что, с целью повышения точности контроля, контрольные точки на объекте задают в форме вершин треугольника, дополнительно измеряют интервал времени между моментами пересечения вращающейся лазерной плоскостью третьей и первой контрольных точек, а координаты смещения подвижного объекта вычисляют по выражениям




где X, Y текущие координаты смещения подвижного объекта;
X1, Y1, X2, Y2, X3, Y3- координаты первой, второй и третьей контрольных точек;
A, B, C углы треугольника, образованного контрольными точками;

t1, t2, t3 временные интервалы между моментами пересечения лазерной веерообразной плоскостью первой и второй, второй и третьей, третьей и первой контрольных точек;
T период вращения лазерной веерообразной плоскости относительно опорного направления.

Документы, цитированные в отчете о поиске Патент 1996 года RU2068091C1

Горный компас 0
  • Подьяконов С.А.
SU81A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Авторское свидетельство СССР № 1517485, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 068 091 C1

Авторы

Сухомлинов А.Д.

Булгаков А.Г.

Даты

1996-10-20Публикация

1989-10-18Подача