Изобретение относится к стереоспецифической полимеризации бутадиена при получении стереорегулярного цис-1,4-полибутадиена, применяемого в шинной, резино-технической и кабельной промышленности.
Известен способ получения цис-1,4-полибутадиена (каучука СКД) с вязкостью по Муни 40-50 в присутствии смешанного галогенида титана (СГТ) и триизобутилалюминия (ТИБА) при расходе СГТ 0,4-0,5 моля на 100 кг мономера. В качестве растворителя обычно используют толуол. Концентрация бутадиена в шихте 11-13 мас. Мольное соотношение ТИБА/СГТ в зависимости от колебания микропримесей в системе составляет 2,5-4. Полимеризацию проводят в батарее из трех и более последовательно соединенных реакторов в течение 4-5 ч при 20-35oС [1]
В указанном способе получения каучука СКД образуются побочные олигомерные продукты, среди которых особенно нежелательны тримеры, обладающие неприятным запахом и склонные к окислению на воздухе с образованием пирофорных производных. Неприятный запах, присущий тримерам бутадиена, каучук сохраняет и после сушки. В результате ухудшаются условия труда работающих в производстве по упаковке каучука, приготовлению резиновых смесей и изготовлению изделий из них. Часть тримеров при сушке каучука попадает в воздух, что значительно ухудшает экологическое состояние как на территории цеха, так и в окрестностях предприятия, а пирофорные производные тримеров могут создать пожароопасную обстановку в цехе.
Наиболее близким к изобретению по технической сущности и достигаемому результату является способ получения цис-1,4-полибутадиена полимеризацией бутадиена в среде растворителя в присутствии каталитической системы, состоящей из СГТ и триалкилалюминия [2] Процесс осуществляют при мольном соотношении триалкилалюминий/СГТ 6-10, в качестве регулятора молекулярной массы используют тетрахлорид титана (ТХТ), вводимый во второй по ходу полимеризатор в количестве 0,12-0,25 моль на 100 кг бутадиена. Однако и в этом случае не удается уменьшить содержание тримеров в полимеризации ниже 0,009 мас.
Техническая задача изобретения снижение содержания олигомеров в полимеризате.
Технический результат достигается тем, что в способе получения цис-1,4-полибутадиена полимеризацией бутадиена в среде растворителя в присутствии каталитической системы, состоящей из смешанного галогенида титана и триалкилалюминия, в качестве смешанного галогенида титана используют продукт взаимодействия тетрахлорида титана (ТХТ) с иодом, полученный при двукратном введении ТХТ, причем в первую очередь, вводимую в начале взаимодействия, включают 30-70% моль от общего количества тетрахлорида титана.
Сущность способа заключается в том, что в шихту (раствор ТХТ и иода в толуоле, предназначенного для сигнала СГТ) в начале подают только часть ТХТ в пределах от 30 до 70% мол. После окончания синтеза СГТ из него проводят отгонку 5-30% об. толуола при атмосферном давлении.
Для получения высокомолекулярного цис-1,4-полибутадиена (СКД) полимеризацию проводят в батарее из трех или более последовательно соединенных реакторов в течение 4-5 ч при 20-35oC. Количество вводимого СГТ составляет 0,16-0,25 мол. на 100 кг бутадиена при отношении ТИБА/СГТ 6-10. Полимеризацию бутадиена возможно осуществлять и периодически в металлическом реакторе. При использовании в качестве растворителя смеси толуола с бутенами концентрацию бутадиена в шихте можно повысить до 19 мас. С целью расширения молекулярно-массового распределения полимера шихту и компоненты катализатора можно подавать в несколько реакторов батареи. Возможно введение в полимеризационную среду тетрахлорида титана как регулятора ММ.
Изобретение иллюстрируется следующими примерами (см.таблицу).
Пример 1а, контрольный. В 3-л металлический реактор, снабженный рубашкой для термостатирования, устройствами для загрузки и выгрузки реагентов, замерами температуры и давления, в атмосфере инертного газа (азота) загружают соответствующим образом подготовленные 1,2 л 11,6%-ного раствора бутадиена в толуоле, а затем (при включенной мешалке) растворы ТИБА (концентрация 0,2 моль/л) и СГТ в количествах 1,5 и 0,25 моль на 100 кг мономера, соответственно (мольное отношение ТИБА/СГТ 6).
Раствор СГТ технический продукт состава: концентрация 0,056 моль/л, отношение I/Cl в формуле 2,7/1,3 (т.е. TiI2,7Cl1,3), содержание свободного иода в растворе 2,1 г/л, из которого при атмосферном давлении азота отгоняют (температура около 110oС) 20% объема. Через 30 мин от начала полимеризации в аппарат дополнительно вводят раствор ТХТ в толуоле (концентрация 0,1 моль/л) из расчета 0,12 моль на 100 кг бутадиена.
Продолжительность полимеризации 3 ч, температура 30oС. По окончании процесса к полимеризату добавляют спиртовый раствор антиоксиданта агидол-2, каучук выделяют. Выход полимера 96 мас. вязкость по Муни 43, содержание цис-1,4-звеньев 91,4% содержание тримеров (суммарное) в полимеризате 0,009 мас.
Данные этого и нижеследующих примеров по синтезу СГТ, условиям и результатам полимеризации представлены в таблице.
Пример 1б. Отличается от примера 1а тем, что раствор СГТ, используемый в процессе полимеризации, получают в лабораторных условиях. В 3-горлую стеклянную колбу (емкость 0,5 л) с обратным холодильником загружают титановую губку в количестве 8-10 г и толуольные растворы ТХТ и иода из расчета получения СГТ с формулой TiI2,7Cl1,3 при концентрации конечного продукта 0,06 моль/л. Общий объем раствора СГТ около 300 мл. В течение 3 ч осуществляют синтез СГТ при температуре 110oС.
Полученный продукт после отгона при атмосферном давлении азота 20% объема анализируют и используют как компонент каталитической системы для полимеризации бутадиена.
Пример 2 (контрольный). Отличается от примера 1 тем, что в качестве компонента каталитической системы используется СГТ синтезированный в тех же условиях, но из расчета получения СГТ с формулой TiI2,4Cl1,6.
Пример 3 (контрольный). Отличается от примера 1 тем, что в качестве компонента каталитической системы используется СГТ синтезированный в тех же условиях, но из расчета получения СГТ с формулой TiI1Cl2.
Пример 4. Отличается от примера 1 тем, что в качестве компонента каталитической системы используется СГТ, синтезированный в тех же условиях, но в начале в реактор вводится только 30 моль от расчетного количества ТХТ, а оставшаяся часть в процессе взаимодействия из расчета получения СГТ с формулой TiI2,7Cl1,3. Процесс полимеризации осуществляют при дозировке ТИБА 1,6 моль, а СГТ 0,16 моль на 100 кг мономера, соответственно, как описано в примере 1а с вводом через 30 мин ТХТ в количестве 0,25 моль на 100 кг бутадиена.
Пример 5. Отличается от примера 4 тем, что при синтезе СГТ в начале в реактор вводится только 50 моль от расчетного количества ТХТ из расчета получения СГТ с формулой TiI2,4Cl1,6. Процесс полимеризации проводят как описано в примере 4.
Пример 6. Отличается от примера 4 тем, что при синтезе СГТ в начале в реактор вводится 70 моль от расчетного количества ТХТ из расчета получения СГТ с формулой TiI1Cl2. Процесс полимеризации проводят как описано в примере 4.
Пример. 7 Отличается от примера 4 тем, что при синтезе СГТ в начале в реактор вводится только 50 моль ТХТ от расчетного количества из расчета получения СГТ с формулой TiI2Cl2. Процесс полимеризации осуществляют при дозировке ТИБА 1,6, а СГТ 0,4 моль на 100 кг бутадиена без дополнительного ввода ТХТ как описано в примере 1а.
Пример 8. Отличается от примера 7 тем, что процесс полимеризации бутадиена проводят в условиях: дозировка ТИБА 1,5, СГТ 0,2 моль на 100 кг мономера, соответственно. Шихта вводится в два этапа. На первом (в начале) вводится 60 мас. а через 40 мин в систему подается оставшаяся часть (т.е. 40 мас. ). Одновременно с ней вводится раствор ТХТ из расчета 0,08 моль на 100 кг бутадиена (от общего количества). ТТТ1
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТАДИЕНА | 1992 |
|
RU2028308C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОНЕНТА КАТАЛИЗАТОРА ДЛЯ ПОЛИМЕРИЗАЦИИ БУТАДИЕНА-1,3 | 1994 |
|
RU2057756C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТАДИЕНА | 1994 |
|
RU2088599C1 |
СПОСОБ ПОЛУЧЕНИЯ БЕЗГЕЛЕВОГО ЦИС-1,4-ПОЛИБУТАДИЕНА | 1993 |
|
RU2074198C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦИС-ПОЛИБУТАДИЕНА | 1993 |
|
RU2028309C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОМОЛЕКУЛЯРНОГО ЦИС-ПОЛИБУТАДИЕНА | 1994 |
|
RU2085558C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТАДИЕНА | 1996 |
|
RU2119499C1 |
СПОСОБ ПОЛУЧЕНИЯ НИЗКОМОЛЕКУЛЯРНОГО ПОЛИМЕРА ИЗОБУТИЛЕНА | 1995 |
|
RU2109019C1 |
СПОСОБ ПОЛУЧЕНИЯ БЕЗГЕЛЕВОГО ЦИС-1,4-ПОЛИБУТАДИЕНА | 1992 |
|
RU2011655C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ДИЕНОВОГО КАУЧУКА | 2003 |
|
RU2263121C2 |
Использование изобретения: получение каучука СКД, применяемого в шинной, резино-технической и кабельной промышленности. Сущность изобретения: полимеризацию бутадиена в среде растворителя проводят в присутствии триалкилалюминия и смешанного галогенида титана (СГТ), СГТ получают взаимодействием тетрахлорида титана с иодом при двукратном введении тетрахлорида титана. В первую порцию, вводимую в начале взаимодействия, включают 30-70 % мол. от общего количества тетрахлорида титана. 1 табл.
Способ получения цис-1,4-полибутадиена полимеризацией бутадиена в среде растворителя в присутствии каталитической системы, состоящей из смешанного галогенида титана и триалкилалюминия, отличающийся тем, что в качестве смешанного галогенида титана используют продукт взаимодействия тетрахлорида титана с иодом, полученный при двукратном введении тетрахлорида титана, причем в первую порцию, вводимую в начале взаимодействия, включают 30 70 мол. от общего количества тетрахлорида титана.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Башкатов Т.В | |||
Технология синтетических каучуков .М.: Химия, 1980, с.208 - 216 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
У.Солтмена.- М.: Мир, 1981, с.34 и 35. |
Авторы
Даты
1996-11-10—Публикация
1993-02-15—Подача