Изобретение относится к области компрессоростроения и может быть использовано в многоступенчатых компрессорах с подводом охлаждающей жидкости в тракт сжимаемого рабочего тела.
Известен способ работы многоступенчатого компрессора, включающий подачу жидкости в проточную часть компрессора через форсунки, перед лопаточным аппаратом (см. например, обзор Берковича А. Л. и Розеноер Е. Е. "Форсировка ГТУ впрыском воды в компрессор" ЦНИИТЭИтяжмаш, Энергетическое машиностроение, серия 3, вып.4, М. 1989, с.36).
Известен также способ работы многоступенчатого компрессора, заключающийся в подаче жидкости в проточную часть компрессора струями на направляющие лопатки, чередуя равномерное распределение их по высоте проточной части (см. например, авторское свидетельство N 1384835, МКИ F 04 D 29/58).
Это решение и принято нами за прототип.
При соударении струй с поверхностью лопатки происходит останов струй и их дробление. Образующиеся капли подхватываются потоком газа, разгоняются до скорости, близкой к скорости потока и поступают на рабочие лопатки.
За счет вращения рабочих лопаток капли равномерно распределяются по окружности проточной части. По мере продвижения газа с каплями по проточной части компрессора происходит испарение капель и, соответственно, охлаждение газа.
Недостатками аналога и прототипа является относительно небольшая эффективность испарительного охлаждения потока газа, а также пониженная надежность из-за опасности эрозии лопаточного аппарата, т.к. образующиеся в потоке газа капли относительно велики по размерам. Механизм образования капель заключается в дроблении потоком газа пленки, стекающей с выходных кромок профилей лопаток. Образующиеся при этом капли имеют конечные и достаточно большие размеры до 60 мкм. Такие капли плохо испаряются и представляют эрозионную опасность.
Целью изобретения является повышение экономичности и надежности компрессора.
Эта цель достигается тем, что в известном способе работы многоступенчатого компрессора, включающем подачу жидкости в проточную часть компрессора, в жидкость перед вводом в тракт компрессора добавляют поверхностно-активные вещества (ПАВ) и хладон.
При этом хладон выбирается таким, чтобы его температура кипения была выше температуры жидкости после первого или группы первых за местом подачи рабочих колес компрессора. Температура жидкости перед подачей в компрессор должна быть ниже температуры кипения хладона.
Вводимые в жидкость добавки вызывают вспенивание в проточной части компрессора и дробление до капель меньшего размера. Благодаря этим процессам увеличивается темп испарения жидкости и уменьшаются контактные напряжения на металле лопаток при соударении их с каплями. Таким образом, возрастает экономичность и надежность работы компрессора.
Сущность предлагаемого способа работы компрессора заключается в следующем.
Жидкость с добавками ПАВ+хладон и температурой, меньшей температуры кипения по своим физическим свойствам мало отличается от исходной, без добавок. В этом случае хладон не испаряется, а общее количество добавок невелико 1 -3% от веса жидкости. Подача такого раствора в компрессор позволяет получить равномерное распределение капель в потоке воздуха за первым рабочим колесом или группой первых рабочих колес после места подачи жидкости. Однако, в дальнейшем из-за нагрева воздуха при сжатии его в компрессоре и, соответственно, капель жидкости происходит вскипание растворенных в жидкости веществ и вспенивание капель. Вспененные капли имеют большую поверхность и, тем самым, интенсифицируется процесс испарения жидкости. Кроме того, после вспенивания легко осуществляется дальнейший распад капель, в результате чего процесс испарения будет интенсифицироваться в большей мере. При соударении вспененной жидкости или капель меньшего размера с лопатками компрессора существенно уменьшаются контактные напряжения, что приводит к снижению эрозионной опасности.
Процесс вспенивания оказывает положительное влияние на движение и испарение не только капель, но и пленки жидкости на поверхности лопаток и корпуса компрессора. Поток тепла к пленке, а, соответственно, и ее вспенивание, направлен как непосредственно от потока воздуха, так и от поверхности корпуса и лопаток компрессора. В результате вспенивания пленки с обеих сторон она интенсивно разрушается и увлекается потоком газа. При этом практически устраняется смещение жидкости под действием центробежных сил в пленке на рабочих лопатках компрессора по направлению к корпусу. Одновременно капли, образующиеся после дробления стекающей пленки с выходных кромок лопаток, имеют большую начальную скорость, что также уменьшает их сепарацию на корпус и эрозию лопаточного аппарата. Разрушение пленки способствует устранению дополнительных потерь энергии потока газа в проточной части компрессора, возникающих из-за ее наличия на поверхностях.
Фактор снижения сепарации на корпус компрессора, происходящий как вследствие описанных выше процессов в пленке, так и уменьшения радиальных перемещений капель из-за их вспенивания, является полезным для испарительного охлаждения потока газа и организации промывки проточной части компрессора.
Если количество хладона в жидкости менее требуемого и не обеспечивает образование газовых пузырей требуемого объема, то, как указывалось выше, пенистой структуры не образовывается и потому эффективность подачи жидкости практически не возрастает. Отдельные пузырьки паров хладона, образующиеся в данном случае в жидкости, несущественно увеличивают поверхность капель и не способствует ее дальнейшему дроблению. Также мало меняется и характер движения пленок на поверхности проточной части компрессора. Кроме того, при дальнейшем движении жидкости в проточной части компрессора вследствие повышения давления газа объемы образовавшихся пузырей будут уменьшаться. В рассматриваемом случае некоторый положительный эффект будет иметь место только из-за снижения коэффициента поверхностного натяжения жидкости при вводе ПАВ, и, как следствие, большего дробления капель.
В случае подачи жидкости с ПАВ+хладон с более высокой температурой, чем температура кипения хладона, а также при применении хладона с температурой кипения, меньшей, чем температура жидкости за первым рабочим колесом, произойдет ухудшение процесса испарения жидкости. Это связано с тем, что процесс вспенивания будет происходить преждевременно, до осуществления процесса равномерного распределения капель в объеме потока газа. В этом случае вспененные струи жидкости не будут проникать в поток газа на заданную глубину, а вспененные капли практически не сепарируют на лопатки рабочего колеса. Введенная в поток газа, таким образом, вспененная жидкость будет двигаться с газом локально, в результате чего и снизится темп испарения.
Применение хладона, имеющего значительно более высокую температуру кипения, чем температура жидкости за первым после ее впрыска рабочим колесом компрессора, приведет к задержке процесса вспенивания капель, что, в целом, ухудшит процесс испарения и понизит эффективность впрыска.
Температура кипения хладона зависит от его химического состава и подбирается применительно к условиям работы компрессора.
Таким образом, при реализации предлагаемого способа работы многоступенчатого компрессора обеспечивается экономичность и надежность компрессора за счет вспенивания капель, которое приводит к увеличению темпа испарения и снижению эрозионной опасности.
На фиг. 1 представлена компрессорная установка, реализующая данный способ.
На фиг. 2 график изменений температур газа (tг, жидкости (tж, кипения хладона (tхл. и давления газа (Рг) в проточной части компрессора.
Установка содержит компрессор 1, приводимый во вращение приводным двигателем 2, емкость 3 с подводящими трубопроводами жидкости и ПАВ с хладоном, соответственно 4 и 5 и отводящим трубопроводом 6, соединенным с патрубком 7 подвода газа к проточной части компрессора.
Принцип работы заключается в следующем (в качестве примера приведем возможность использования способа в компрессоре газотурбинной установки мощностью 150 МВт).
Жидкость по трубопроводу 4 в количестве 1% от расхода газа через компрессор с температурой 15o С подают в емкость 3, куда одновременно по трубопроводу 5 добавляют ПАВ, например, пенообразователь ПО-ЗАИ (водный раствор вторичных алкилсульфатов с ингибитором коррозии) в количестве 1% от веса воды с температурой 15o С и хладон, например, 114В2 ГОСТ 15899-80, в количестве 0,6% от веса воды. Выбранные температуры ПАВ и хладона ниже температуры кипения хладона. В данном примере при атмосферном давлении хладон кипит при температуре 45o С. В результате этого в емкости 3 не происходит предварительного вскипания хладона. Образовавшийся в емкости 3 раствор по трубопроводу 6 поступает в патрубок 7 подвода газа к проточной части компрессора. Попадающий на первое рабочее колесо раствор, в виде капель равномерно распределяется в потоке газа, (при давлении потока газа за первым колесом, равным 1,5 ата и температуре кипения хладона 47o С). В этом же месте жидкость с добавками ПАВ и хладона нагревается также до температуры 47o С. При этом частицы хладона в растворе вскипают и превращают раствор в пенистую структуру. Это превращение увеличивает поверхность капель.
В результате вспенивания объемы капель за первым рабочим колесом возрастают в 2,6 раза. Соответственно возрастает и темп испарения капель. По мере продвижения потока газа в компрессоре 1 температура его повышается до 350o С, а температура раствора до 120o С. Характер изменения температуры и давления газа, температура кипения хладона, а также температура жидкости приведены на графике фиг. 2.
Подача 1% жидкости от расхода газа без добавок повышает КПД компрессора на 2,5% тогда тот же расход жидкости с добавками повысит КПД компрессора на 3,8% Это, в свою очередь, увеличит мощность газотурбинной установки дополнительно на 3% и ее КПД на 1,5%
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА ВОЗДУХОЖИДКОСТНОГО ОХЛАЖДЕНИЯ СОПЛОВЫХ И РАБОЧИХ ЛОПАТОК КОНЦЕВОЙ СТУПЕНИ ГАЗОВОЙ ТУРБИНЫ | 2001 |
|
RU2205275C2 |
УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ МОЩНОСТИ ГАЗОТУРБИННЫХ УСТАНОВОК | 1995 |
|
RU2126902C1 |
Осевой многоступенчатый компрессор с впрыском воды в его проточную часть | 2020 |
|
RU2757150C1 |
СТАТОР ОСЕВОГО КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 1992 |
|
RU2036333C1 |
РОТОР МНОГОСТУПЕНЧАТОГО ОСЕВОГО КОМПРЕССОРА | 1991 |
|
RU2033566C1 |
НАПРАВЛЯЮЩАЯ ЛОПАТКА СТУПЕНИ ТУРБИНЫ | 1999 |
|
RU2173780C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛ | 2000 |
|
RU2179909C1 |
КОМПРЕССОР ВЫСОКОГО ДАВЛЕНИЯ ДВУХКОНТУРНОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ | 1992 |
|
RU2033563C1 |
УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ РАБОЧЕГО КОЛЕСА ГАЗОВОЙ ТУРБИНЫ | 2000 |
|
RU2183747C1 |
СПОСОБ ДИАГНОСТИРОВАНИЯ СОСТОЯНИЯ ЗАКРЕПЛЕННЫХ В ПОЛКАХ СОПЛОВЫХ И РАБОЧИХ ЛОПАТОК МНОГОСТУПЕНЧАТОЙ ТУРБОМАШИНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1988 |
|
RU2006594C1 |
Использование: в компрессоростроении и может быть использовано в многоступенчатых компрессорах охлаждающей жидкости в тракт сжимаемого рабочего тепла. Сущность изобретения: в жидкость перед вводом в тракт компрессора добавляют поверхностно-активные вещества и хладон с температурой кипения выше температуры жидкости. 2 ил.
Способ охлаждения потока газа в многоступенчатом компрессоре, включающий подачу жидкости в проточную часть компрессора, отличающийся тем, что в жидкость перед вводом в проточную часть добавляют поверхностно-активные вещества и хладон с температурой кипения выше температуры жидкости.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Беркович А.Л | |||
и Розеноер Е.Е | |||
Форсировка ГТУ впрыском воды в компрессор, ЦНИИТЭИТЯЖМАШ, Энергетическое машиностроение, серия 3, вып | |||
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ охлаждения потока газа в осевом компрессоре | 1986 |
|
SU1384835A1 |
Механизм для сообщения поршню рабочего цилиндра возвратно-поступательного движения | 1918 |
|
SU1989A1 |
Авторы
Даты
1996-11-20—Публикация
1992-12-22—Подача