СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ТЕРМООКИСЛИТЕЛЬНОЙ ДЕСТРУКЦИИ ПОЛИМЕРОВ И ПОЛИМЕРНЫХ МАТЕРИАЛОВ Российский патент 1996 года по МПК G01N25/28 G01N7/00 G01N33/44 

Описание патента на изобретение RU2069855C1

Изобретение относится к испытательной технике, а именно к испытаниям полимеров и полимерных материалов, в частности к определению величины эффективной энергии активации Е процесса термоокислительной деструкции полимеров.

Известен способ определения энергии активации по результатам изотермического нагревания. Согласно этому способу образцы материалов кратковременно, например 1, 3, 5 ч, нагревают при трех температурах. Затем замеряют изменение массы, либо другого параметра, характеризующего деструкцию полимера, а величину Е рассчитывают по тангенсу (b) угла прямой lgk-1/T из соотношения b E/4,57 ккал/моль, k изменение параметра [1,2,3]
Недостатком этого способа является невоспроизводимость за счет вклада остаточных летучих в полимере и за счет произвольно выбираемой температуры эксперимента.

Этот недостаток отсутствует у другого способа определения Е, согласно которому 30-50 образцов полимерного материала длительно нагревают (500-5000 ч) при трех разных температурах до момента практической непригодности. Срок службы (L) при заданной температуре фиксируют по изменению до заданного уровня какого-либо критического параметра, например, пробивного напряжения. Далее величину Е рассчитывают по тангенсу (b) угла наклона прямой lgL-1/T из соотношения b E/4,57 ккал/моль [4]
Но этот метод очень трудоемок, длителен, дорог.

Менее трудоемким, чем предыдущий метод, и наиболее надежным является способ определения энергии активации термоокислительной деструкции полимеров по результатам неизотермического нагревания, когда образцы нагревают, используя специальное оборудование, например, дериватограф, дифференциально-сканирующий калориметр и т. д. постепенно поднимая температуру с заданной скоростью. Процесс проводят при 3-х, 4-х скоростях нагревания, при этом автоматически регистрируют изменение массы. Далее строят графики зависимости логарифма скорости нагревания lgV от обратной абсолютной температуры 1/T для определенного уровня потери массы (10,20,30,90%). Энергию активации рассчитывают по тангенсу (b) угла наклона прямой lgV-1/T из соотношения:
b -0,457 E/R ккал/моль,
где R универсальная газовая постоянная.

Получают 9 значений Е, которые усредняют. Продолжительность эксперимента и обработка данных 20 ч [5]
Метод требует специального дорогостоящего оборудования, значительного расхода электроэнергии. Он достаточно длителен. Обработка результатов трудоемка.

Цель изобретения снижение расхода электроэнергии, упрощение и ускорение способа определения эффективной энергии активации Е, что особенно важно при использовании величины E для прогнозирования эксплуатационных характеристик полимеров и полимерных материалов, в частности, температуры эксплуатации при заданном сроке службы и, наоборот, срока службы при заданной температуре эксплуатации.

Цель достигается тем, что определяют элементный состав элементарного звена полимера или полимерного материала посредством сжигания микрообразца (3 мг) или любым другим способом, а затем рассчитывают величину Е из соотношения:

где ∑ C,N сумма атомов углерода, азота и других элементов, кроме водорода и кислорода;
∑ H,O сумма атомов кислорода и водорода в элементарном звене полимера;
K коэффициент, равный 146 кДж/моль и соответствующий энергии распада гидропероксидных радикалов.

Изобретение базируется на экспериментально найденной зависимости между энергией активации термоокислительной деструкции полимеров и относительным содержанием атомов элементов в элементарном звене полимера. В процессе термоокислительной деструкции, протекающей по радикально-цепному механизму, ведущую роль играют гидропероксидные радикалы, в образовании и распаде которых активное участие принимают атомы водорода и кислорода. Содержание атомов этих элементов относительно других атомов в элементарном звене полимера указывает на степень активации процесса термоокислительной деструкции. Чем выше содержание атомов водорода и кислорода, активнее процесс, тем ниже величина Е.

Для обеспечения воспроизводимости получаемых результатов образец в кварцевой трубке вводится в течение 10 мин в предварительно нагретую трубчатую печь до 1000oС, т.е. с условной скоростью нагревания образца 100 град/мин, что соответствует скорости сжигания 0,2-0,4 мг/мин.

Масса образца обычно составляет 3±1 мг для обеспечения полноты равномерного сгорания в указанных условиях. Масса менее 2 мг увеличивает погрешность. Масса более 4-5 мг требует большей продолжительности эксперимента.

Пример. Измельченная пленка полиэтилена массой 3,535 мг подвергается сжиганию, после чего определяется привес поглотителей, который составляет по воде H2O 4,530 мг, по углекислому газу CO2 11,180 мг. Далее определение водорода и углерода определяется из соотношений:

где 0,119=2,016/18,016; 0,2729=12,01(MC/44,01.

Для нахождения атомных множителей сначала определяют атомные факторы делением полученных значений 14,3% и 86,3% на атомные массы определяемых элементов: 14,3: 1=14,3 и 86,3:12=7,19, затем определяют атомные множители: для водорода 14,3/7,19= 2 и для углерода 7,19/7,19=1, т.е. в элементарном звене полимера соотношение атомов водорода к атомам углерода составляет 2:1. Энергия активации термоокислительной деструкции определяется просто: E = ∑ C,N/∑ H,O. 146 кДж/моль, в данном случае Е=(1/2)•146 кДж/моль 73 кДж/моль.

Продолжительность эксперимента и обработка результатов не более одного часа.

Для подтверждения правомерности предлагаемого способа определения эффективной энергии активации Е были проведены две серии опытов: неизотермический термогравиметрический анализ при четырех скоростях нагревания на венгерском дериватографе фирмы МОМ с последующей обработкой данных, как дано в прототипе (способ 1) и элементный анализ посредством сжигания образца с последующим расчетом Е согласно предлагаемому способу (способ 2). Результаты опытов приведены в таблице. Приведенные данные показывают вполне удовлетворительное совпадение.

Метод прост, расход электроэнергии сокращается в 40 раз, временные затраты уменьшаются в 20 раз.

Похожие патенты RU2069855C1

название год авторы номер документа
ТЕРМОАНАЛИТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ТЕРМОДЕСТРУКЦИИ ПОЛИМЕРНОГО МАТЕРИАЛА 2016
  • Потемкин Григорий Александрович
  • Морозова Татьяна Александровна
  • Коршунова Татьяна Владимировна
  • Дорофеев Андрей Алексеевич
RU2627552C1
Гетероциклический термореактивный полимер 2002
  • Сидоренко В.И.
  • Панина Т.В.
  • Пономарев И.И.
RU2225417C1
ТОПЛИВНАЯ КОМПОЗИЦИЯ 1991
  • Лучано Канова[It]
  • Этторе Санторо[It]
  • Лучано Боноли[It]
  • Паоло Фалки[It]
RU2041921C1
КРЕМНИЙСОДЕРЖАЩИЙ УГЛЕРОДНЫЙ СОРБЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Хохлова Галина Павловна
  • Ефимова Ольга Сергеевна
  • Патраков Юрий Федорович
RU2417836C2
ПРИСАДКА ДЛЯ СМАЗОЧНЫХ МАСЕЛ 1995
  • Моисеев В.В.
  • Ковшов Ю.С.
  • Ковтуненко Л.В.
  • Филь В.Г.
  • Глуховской В.С.
  • Кудрявцев Л.Д.
  • Молодыка А.В.
  • Привалов В.А.
  • Прохоров Н.И.
  • Зорников И.П.
  • Полуэктов И.Т.
RU2109763C1
СПОСОБ ПОЛУЧЕНИЯ ОЛИГОБОРСИЛАЗАНОВ 2016
  • Рыжова Ольга Георгиевна
  • Стороженко Павел Аркадьевич
  • Тимофеев Иван Анатольевич
  • Тимофеев Павел Анатольевич
  • Гуркова Элла Лазаревна
  • Дугин Сергей Николаевич
RU2624442C1
ЭЛЕКТРОСТАНЦИЯ, НАПРИМЕР, ДЛЯ БУРЫХ УГЛЕЙ (СПОСОБ И УСТРОЙСТВО) 2009
  • Антуфьев Игорь Александрович
RU2427755C2
СПОСОБ ПОЛУЧЕНИЯ НАФТАЛИН-2,6-ДИКАРБОНОВОЙ КИСЛОТЫ 1992
  • Манзуров В.Д.
  • Морозов В.М.
  • Ковалев Л.С.
RU2030386C1
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОФАЗНЫХ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ 2016
  • Петерсон Джозеф Дж.
  • Тренор Скотт Р.
RU2687248C1
1,1`-ДИ[МЕТАКРИЛОИЛОКСИ-БИС(ТРИФТОРМЕТИЛ)МЕТИЛ]ФЕРРОЦЕН В КАЧЕСТВЕ МОНОМЕРА, ПОВЫШАЮЩЕГО ТЕРМОСТОЙКОСТЬ ПОЛИМЕТИЛМЕТАКРИЛАТА 2017
  • Дяченко Виктор Иванович
  • Мельник Ольга Александровна
  • Игумнов Сергей Михайлович
  • Никитин Лев Николаевич
  • Хохлов Алексей Ремович
RU2661637C1

Иллюстрации к изобретению RU 2 069 855 C1

Реферат патента 1996 года СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ТЕРМООКИСЛИТЕЛЬНОЙ ДЕСТРУКЦИИ ПОЛИМЕРОВ И ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Использование: испытания полимеров и полимерных материалов, в частности определение величины эффективной энергии активации Е процесса термоокислительной деструкции полимеров. Сущность изобретения: способ включает термообработку образца и расчет величины энергии активации, причем термообработку образца осуществляют посредством сжигания со скоростью 0,2-0,4 мг/мин при температуре 1000oС и начальной массе образца 2-4 мг. Определяют элементный состав элементарного звена полимера и полимерного материала, а величину энергии активации рассчитывают из соотношения: E= ∑C,N.../ΣH,O, кДж/моль, где ∑С, N... - сумма атомов углерода, азота и других элементов, кроме водорода и кислорода; SН, О. . . - сумма атомов водорода и кислорода; К - коэффициент, равный 146 кДж/моль, соответствующий энергии распада гидропероксидных радикалов. 1 табл.

Формула изобретения RU 2 069 855 C1

Способ определения энергии активации термоокислительной деструкции полимеров и полимерных материалов, включающий термообработку образца и расчет величины энергии активации, отличающийся тем, что термообработку образца осуществляют посредством сжигания со скоростью 0,2 0,4 мг/мин при температуре 1000oC и начальной массой образца 2 5 мг, определяют элементный состав элементарного звена полимера и полимерного материала, а величину энергии активации рассчитывают из соотношения

где C, N. сумма атомов углерода, азота и других элементов, кроме водорода и кислорода;
H, O. сумма атомов кислорода и водорода в элементарном звене полимера;
K коэффициент, равный 146 кДж/моль и соответствующий энергии распада гидроперексидных радикалов.

Документы, цитированные в отчете о поиске Патент 1996 года RU2069855C1

Mitsui H., Tanii T., Joshida K., Kenjo S
Shorttime thermal life evolution of the rotating machinery insulation systems by the EGA-GC-Method
IEEE Translation on Power apparatus and Systems
Vol
Транспортер для перевозки товарных вагонов по трамвайным путям 1919
  • Калашников Н.А.
SU102A1
Способ получения молочной кислоты 1922
  • Шапошников В.Н.
SU60A1
Способ оценки энергии активации материалов 1987
  • Громаковский Дмитрий Григорьевич
  • Толкачев Николай Михайлович
  • Дубман Марина Наумовна
  • Скачек Андрей Борисович
  • Горбатенко Валерий Васильевич
SU1490592A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ определения энергии активации диэлектрических материалов 1988
  • Шибанов Юрий Дмитриевич
  • Никитин Александр Владимирович
  • Годовский Юлий Кириллович
SU1589174A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Бугакова Э.Н., Благовещенский В.М
Ускоренное определение температурных ресурсов и срока хранения полимерных материалов
Электронная техника, сер
Материалы, вып
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Веникодробильный станок 1921
  • Баженов Вл.
  • Баженов(-А К.
SU53A1
Ozawa T
Anew method of analizung thermo-gravimetruc data
Bull
Chem
Soc., Japan, 38, 1965, 1881.

RU 2 069 855 C1

Авторы

Баркова Л.В.

Геворкян Э.Т.

Тюрина М.В.

Даты

1996-11-27Публикация

1993-09-16Подача