СПОСОБ НЕПРЕРЫВНОГО УПРОЧНЕНИЯ ЛИСТОВОГО ПОЛИРОВАННОГО СТЕКЛА Российский патент 1997 года по МПК C03C17/245 

Описание патента на изобретение RU2073658C1

Изобретение относится к области стекольного производства, в частности, к способу изготовления листового стекла на поверхности расплавленного металла.

Известен способ изготовления листового полированного стекла, включающий подачу стекломассы на поверхность расплавленного металла, формование стекломассы в ленту в условиях защитной газовой среды, продвижение ленты стекла вдоль ванны с одновременным охлаждением, достаточным для того, чтобы без повреждения переместить ее непосредственно на валы печи отжига [1]
Наиболее близким к изобретению по технической сущности является способ изготовления листового стекла, включающий подачу стекломассы в ванну на поверхность расплавленного металла, формование ее в ленту, подачу в ванну через газораспределительное устройство на ленту стекла газовой смеси, содержащей силан и образующий при пиролизе кремниевое покрытие [2]
Недостатком известных способов является то, что формование ленты стекла согласно этим способам оказывается незаконченным, так как поверхности ленты стекла насыщены некомпенсированными связями и при выходе из ванны расплава начинают активно взаимодействовать с газами и парами окружающей атмосферы. Газораспределительное устройство расположено в ванне расплава металла над лентой стекла, т.е. газовая смесь подается только на одну верхнюю поверхность. По мере развития процесса атмосферного и механического повреждения нижней поверхности, снижается прочность стекла.

Задачей настоящего изобретения является создание такого способа производства листового стекла, который позволил бы обеспечить защиту поверхностей стекла от повреждения и получить листовое стекло с улучшенными прочностными характеристиками.

Поставленная задача решается тем, что в предлагаемом способе изготовления листового полированного стекла формование поверхностей стекла осуществляют непосредственно после съема ленты стекла с расплава металла в газовой атмосфере, где обе поверхности ленты стекла последовательно обрабатывают сначала парами воды, а затем газовой смесью моносилана с аргоном или азотом, после подачи ленты стекла в печь отжига ее поверхности обрабатывают парами воды до температуры ленты стекла 150 100oC.

В традиционных способах производства флоат-стекла формующая ванна расплава отделена от узла выработки как в механическом, так и в гидравлическом смысле.

Предлагаемый способ осуществляют следующим образом.

Стекломассу подают на поверхность расплавленного металла, например, расплава олова или его сплава, удельный вес которого превышает удельный вес стекла. Стекломасса, растекаясь под действием силы тяжести и сил поверхностного натяжения, формируется в плоскопараллельную ленту стекла. Эту ленту перемещают к выходному концу ванны, постепенно понижая температуру с помощью терморегуляторов, так чтобы полученная лента, охлаждаясь, затвердевала, сохраняя плоскопараллельную форму. Внутри ванны с помощью системы трубопроводов поддерживается постоянное избыточное давление защитной среды инертного газа, например, азота, с примесью восстановительного газа, например, водорода. Далее лента стекла, отделяясь от поверхности расплава металла, входит в камеру обработки, на своде которой расположен трубопровод для подачи защитного газа из азота и водорода. В камере над и под лентой стекла расположены газораспределительные устройства для подачи модифицирующего реагента с целью окончательного формования обеих поверхностей ленты стекла. Продвигаясь вдоль указанной камеры по валам рольганга в зоне температур 600 - 400oC, лента стекла подвергается последовательно обработке парами воды, а затем газовой смесью моносилана с аргоном, после подачи ленты стекла в печь отжига ее поверхности обрабатывают парами воды до температуры ленты стекла 150 100oC.

Предлагаемый способ формования позволяет обрабатывать обе поверхности ленты стекла и получать покрытие более высокого качества, так как в камере обработки, в отличие от ванны расплава, отсутствует микроконденсат олова, вызывающий дефектность покрытия.

На чертеже изображено продольное сечение устройство, с помощью которого осуществляется предлагаемый способ.

Показанное на чертеже устройство для производства листового стекла включает стекловаренную печь 1, лоток 2, ванну 3, содержащую расплавленный металл 4, устройство 5 для регулирования температуры, устройство 6 подачи защитного газа, устройство 7 для модификации поверхностей ленты стекла 8, тянущее устройство 9 и печь для отжига стекла 10.

Устройство 7, представляющее собой камеру шириной, равной ширине ванны расплава 3 и длиной 0,5 1 м, расположенную между ванной 3 и печью отжига 10 и являющуюся продолжением корпуса ванны 3, оснащено трубопроводов 11 для подачи азотно-водородной смеси в качестве защитной среды. В камере 7 над и под лентой стекла 8 расположены устройства 12 для подачи модифицирующего реагента, причем, последние установлены поперек ленты стекла 8.

Таким образом, формующая камера представляет собой ванну расплавленного металле и камеру для обработки поверхностей ленты стекла газовыми реагентами.

Пример. Сформированную в ванне расплава 3 ленту стекла 8 перемещают со скоростью, например, 200 м/час к выходному концу ванны 3, постепенно понижая ее температуру. На выходе из ванны расплава 3 в зоне между ванной 3 и первым ведущим валом рольганга 9 при температуре 600oC верхнюю и нижнюю поверхности ленты стекла 8 обрабатывают с помощью инжекторных устройств (на чертеже не показаны) парами воды, что способствует устранению микротрещин Гриффита в результате пластификации поверхностного слоя. Далее в камере 7, расположенной между первым и вторым валами рольганга 9 с помощью газораспределителей 12 дополнительно обрабатывают поверхности ленты стекла 8 газообразной смесью, содержащей 5% моносилана, 90% аргона, 5% водорода.

В результате реакции кремния и ксилородсодержащих элементов образуется прозрачное высококремниевое покрытие из SiO2 толщиной более 400 .

Затем, после подачи ленты стекла в печь отжига ее поверхности обрабатывают парами воды на протяжении всего процесса отжига до температуры ленты стекла 150 100oC, что способствует сохранению пластифицированного поверхностного слоя стекла и толщины кремнийоксидного покрытия.

Средние значения прочностных характеристик стекла приведены в таблице.

Таким образом, комплексная обработка ленты стекла вышеперечисленными реагентами уменьшает трещинноватость поверхности, тем самым повышая механическую прочность стекла, затем консервирует прочность поверхностей светопрозрачной защитной пленкой из SiO2, имеющей повышенную микротвердость и прочность к истиранию.

Использование предлагаемого способа позволяет получать высококачественное конструкционное листовое стекло с модифицированными поверхностями, обеспечивающими повышенные прочностные, теплозащитные или декоративные свойства.

В данном способе исключаются присущие для всех известных способов специальные сложные устройства для устранения окислов олова, вызывающих дефектность поверхности ленты стекла. В предлагаемом способе устраняется подсос кислорода в выходной конец ванны, что значительно уменьшает образование окислов олова и дает лучшие экономические результаты.

Изобретение можно использовать при производстве стекла любого химического состава, которое можно формовать с помощью флоат-процесса, например, натриево-известково-силикатное или боросиликатное стекло. Отходы стекла с кремниевым покрытием могут быть использованы в качестве обратного боя, так как не содержат инородных примесей.

Стекло с таким покрытием может быть использовано в качестве матричных элементов при производстве органического стекла, элементов остекления наземного и особенно сельскохозяйственного транспорта, работающего на открытой местности в условиях повышенной солнечной радиации, в области архитектурного строительства с повышенными требованиями к эстетическим показателям и конструкционной прочности.

Похожие патенты RU2073658C1

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ГАЗОВЫХ ПОТОКОВ ЗАЩИТНОЙ АТМОСФЕРЫ В ВАННЕ РАСПЛАВА ПРИ ПРОИЗВОДСТВЕ ФЛОАТ-СТЕКЛА 2005
  • Аблязов Камиль Алимович
  • Жималов Александр Борисович
  • Солинов Владимир Федорович
  • Файнберг Евгений Борисович
  • Каплина Татьяна Васильевна
  • Юнева Елена Владимировна
RU2291122C1
ПОЛИМЕРИЗАЦИОННАЯ ФОРМА ДЛЯ ПРОИЗВОДСТВА ОРГАНИЧЕСКОГО СТЕКЛА 1994
  • Солинов Владимир Федорович
  • Каплина Татьяна Васильевна
RU2046715C1
ПРИСПОСОБЛЕНИЕ ДЛЯ УПРОЧНЕНИЯ НИЖНЕЙ ПОВЕРХНОСТИ ДВИЖУЩЕЙСЯ ЛЕНТЫ ФЛОАТ-СТЕКЛА 2005
  • Жималов Александр Борисович
  • Солинов Владимир Федорович
  • Каплина Татьяна Васильевна
  • Горина Инесса Николаевна
  • Шитова Людмила Александровна
  • Файнберг Евгений Борисович
  • Гончарова Елена Алексеевна
RU2299184C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОГО СТЕКЛА ТОЛСТЫХ НОМИНАЛОВ 2005
  • Аблязов Камиль Алимович
  • Жималов Александр Борисович
  • Солинов Владимир Федорович
  • Файнберг Евгений Борисович
  • Пентко Юрий Нарциссович
  • Каплина Татьяна Васильевна
  • Рущаков Владимир Александрович
  • Юнева Елена Владимировна
RU2299182C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОГО СТЕКЛА НА РАСПЛАВЕ МЕТАЛЛА 2005
  • Жималов Александр Борисович
  • Файнберг Евгений Борисович
  • Пентко Юрий Нарциссович
  • Юнева Елена Владимировна
  • Шитова Людмила Александровна
  • Каплина Татьяна Васильевна
RU2302380C1
ПОЛИМЕРИЗАЦИОННАЯ ФОРМА 1995
  • Солинов Владимир Федорович
  • Каплина Татьяна Васильевна
RU2090526C1
СПОСОБ ПРОИЗВОДСТВА ФЛОАТ-СТЕКЛА 2005
  • Жималов Александр Борисович
  • Солинов Владимир Федорович
  • Каплина Татьяна Васильевна
  • Горина Инесса Николаевна
  • Файнберг Евгений Борисович
  • Шитова Людмила Александровна
  • Гончарова Елена Алексеевна
RU2299183C1
СПОСОБ ДВУХСТАДИЙНОГО УПРОЧНЕНИЯ ДВИЖУЩЕЙСЯ ЛЕНТЫ ФЛОАТ-СТЕКЛА 2009
  • Жималов Александр Борисович
  • Солинов Владимир Федорович
  • Каплина Татьяна Васильевна
  • Шитова Людмила Александровна
  • Юнева Елена Владимировна
  • Зинина Елена Петровна
  • Темнякова Наталья Викторовна
RU2391302C1
СПОСОБ ФОРМОВАНИЯ ПОЛИРОВАННОГО СТЕКЛА НА НЕСВОБОДНОЙ ЖИДКОПЛЕНОЧНОЙ МЕТАЛЛИЧЕСКОЙ ПОВЕРХНОСТИ 1993
RU2123981C1
СПОСОБ ПРОИЗВОДСТВА ДЕКОРАТИВНОГО СТЕКЛА НА РАСПЛАВЕ МЕТАЛЛА 2005
  • Аблязов Камиль Алимович
  • Жималов Александр Борисович
  • Файнберг Евгений Борисович
  • Пентко Юрий Нарциссович
  • Каплина Татьяна Васильевна
  • Юнева Елена Владимировна
RU2291123C1

Иллюстрации к изобретению RU 2 073 658 C1

Реферат патента 1997 года СПОСОБ НЕПРЕРЫВНОГО УПРОЧНЕНИЯ ЛИСТОВОГО ПОЛИРОВАННОГО СТЕКЛА

Область применения: производство листового стекла на поверхности расплава металла. Обе поверхности листового полированного стекла при переходе ленты стекла из ванны расплава в печь отжига последовательно обрабатывают сначала парами воды, а затем газовой смесью моносилана с аргоном или азотом. После подачи ленты стекла в печь отжига ее поверхности обрабатывают парами воды до температуры ленты стекла 100 - 150oC. 1 ил., 1 табл.

Формула изобретения RU 2 073 658 C1

Способ непрерывного упрочнения листового полированного стекла путем обработки его поверхности смесью моносилана с аргоном или азотом при 400 - 600oС и отжига, отличающийся тем, что осуществляют обработку обеих поверхностей стекла, которые предварительно обрабатывают парами воды, а поcле подачи стекла в печь отжига повторно обрабатывают его поверхности парами воды до 100 150oС.

Документы, цитированные в отчете о поиске Патент 1997 года RU2073658C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Патент ФРГ N 1471824, кл
Способ образования коричневых окрасок на волокне из кашу кубической и подобных производных кашевого ряда 1922
  • Вознесенский Н.Н.
SU32A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Патент США N 4188444, кл
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1

RU 2 073 658 C1

Авторы

Солинов Владимир Федорович

Каплина Татьяна Васильевна

Даты

1997-02-20Публикация

1992-04-09Подача