КОНСТРУКЦИОННАЯ СТАЛЬ Российский патент 1997 года по МПК C22C38/14 

Описание патента на изобретение RU2073739C1

Изобретение относится к металлургии, в частности к низколегированной стали, предназначенной для изготовления металлических конструкций устойчивых к морской коррозии и низким температурам.

Известна сталь, содержащая, мас. углерод 0,12; кремний 0,80; марганец 0,50-0,80; хром 0,60-0,90; никель 0,50-0,80; медь 0,40-0,60; железо остальное [1]
Наиболее близкой к предлагаемой по технической сущности и достигаемому результату является сталь, содержащая 2 мас. углерод 0,09-0,13; кремний 0,40-1,13; марганец 0,60-1,00; хром 0,90-1,30; алюминий 0,01-0,03; титан 0,01-0,03; железо остальное [2]
Эта сталь обладает повышенной стойкостью к морской коррозии и высокими механическими свойствами за счет рационального соотношения содержания углерода, кремния и марганца и предназначена для металлических сооружений портов, в частности для изготовления шпунтовых свай. Однако возрастающие требования к конструкционным сталям для работы в морской воде по стойкости к морской коррозии и по уровню механических свойств ограничивает ее применение. По уровню прочностных свойств и ударной вязкости при низких температурах данная сталь заменяется в конструкциях на другие, более дорогие стали.

Целью изобретения является усовершенствование конструкционной стали регламентированием интервалов значений количества вводимых в сталь углерода, кремния и марганца, алюминия, титана, кальция, азота к морской воде, прочность и ударную вязкость при температуре до -70oС.

Это достигается тем, что известная сталь, содержащая углерод, кремний, марганец, хром, алюминий, титан и железо, дополнительно содержит азот и кальций при следующих соотношениях компонентов, мас. углерод 0,10; кремний 0,10-0,50; марганец 0,30-0,80; алюминий 0,01-0,05; титан 0,005-0,020; азот 0,008-0,025; кальций 0,005-0,020; железо остальное.

В предлагаемой стали содержание углерода и марганца близко к содержанию данных элементов в прототипе. Увеличение содержания углерода до 0,18 мас. в предлагаемой стали осуществляется с целью повышения технологичности ее выплавки и прочностных свойств.

Уменьшение содержания марганца до пределов 0,30-0,80 мас. что в 1,5 раза меньше, чем в прототипе, выполнено для снижения себестоимости производства предлагаемой стали.

Содержание кремния в предлагаемой стали принято равным 0,50-1,10 мас. что в 1,5 раза выше по граничным пределам, чем в прототипе. Данное содержание кремния наилучшим образом обеспечивает высокие прочностные свойства данной стали.

Отсутствие в заявляемой стали хрома компенсируется для сохранения высокой коррозионной стойкости микродобавками ряда элементов с получением в результате этого существенной экономии.

Дополнительный ввод в заявляемую сталь азота и кальция в предлагаемых пределах обеспечивает повышение стойкости к морской коррозии, механических свойств и, прежде всего, пластических свойств и ударной вязкости.

Повышение свойств стали достигается как за счет заявленного сочетания содержания углерода кремния и марганца, так и за счет образования путем дополнительного ввода алюминия, титана и азота, нитридов, обеспечивающих формирование стабильной мелкодисперсной структуры, независимо от технологии горячей механической обработки. Наиболее эффективным является содержание азота в пределах 0,008-0,025 мас. Снижение содержания азота ниже 0,008 мас. не обеспечивает необходимого уровня свойств. Повышение содержания азота выше 0,025 мас. приводит к снижению пластических свойств стали в результате переупрочнения металла и увеличению склонности его к деформационному старению.

Введение титана в пределах 0,005-0,020 мас. обеспечивает формирование в стали нитридов титана требуемых размеров для образования мелкодисперсной структуры. Так, при уменьшении содержания титана ниже 0,005 мас. в стали используется неэффективно, а при увеличении его свыше 0,020 мас. происходит увеличение размеров нитридов титана, что приводит к уменьшению прочностных свойств и, в большей степени, пластичности стали.

Оптимальное содержание алюминия в стали 0,01-0,05 мас. При уменьшении его содержания ниже 0,01 мас. установлено понижение уровня механических свойств стали. Содержание алюминия свыше 0,05 мас. не приводит к повышению механических свойств, но существенно затрудняет разливку стали ввиду затягивания канала разливочного стакана.

Проверку стали осуществляли на сталях, химический состав которых приведен в табл. 1. Выплавку металла проводили в индукционной печи ИСТ-60, а легирование азотом присадкой в сталеразливочный ковш азотированного Si-Mn и SiCa. Разливку металла проводили сверху в уширенную книзу изложницу. Масса слитков составляла 150 кг. Горячую деформацию слитков на сутунку осуществляли свободной ковкой на 10-тонном молоте.

Результаты проведения механических испытаний опытных сталей, выполненных в соответствии с требованиями ГОСТа, приведены в табл.2.

Из табл. 2 следует, что предлагаемая сталь в сравнении с известной обладает более высокими механическими свойствами, в частности, в 1,2 раза более высокими прочностными свойствами, в 1,3 раза более высокими пластическими свойствами и в 2 раза более высокой ударной вязкостью при низких температурах.

В результате коррозионных испытаний заявляемой стали и известного состава стали по прототипу установлено, что заявляемая сталь обладает на 10-15 более высокой стойкостью к морской коррозии по сравнению с прототипом.

Наиболее высокая коррозионная стойкость к морской коррозии получена в образцах от плавок N 3,6,7, которые отличаются от других плавок несколько большим суммарным содержанием углерода, кремния и марганца (табл.3).

Проведенные сравнительные испытания коррозионной стойкости ряда известных сталей также подтвердили высокую стойкость к морской коррозии заявляемой стали, в частности и по сравнению со сталями 10ХСНД и 15ХСНД.

Из этого следует, что предлагаемая сталь обладает хорошим сочетанием стойкости к морской коррозии и механических свойств. При достаточно высоких прочностных свойствах предлагаемая сталь обладает высокой пластичностью. Кроме того, данная сталь по величине ударной вязкости отвечает требованиям, предъявляемым к сталям для эксплуатации в условиях Севера.

Таким образом, данной сталью можно заменить ряд более дорогих конструкционных сталей для металлических сооружений портов, в частности для изготовления шпунтовых свай.

Похожие патенты RU2073739C1

название год авторы номер документа
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ 2010
  • Чикалов Сергей Геннадьевич
  • Тазетдинов Валентин Иреклеевич
  • Ладыгин Сергей Александрович
  • Александров Сергей Владимирович
  • Прилуков Сергей Борисович
  • Белокозович Юрий Борисович
  • Медведев Александр Павлович
  • Ярославцева Оксана Владимировна
RU2437954C1
Горячекатаная бесшовная насосно-компрессорная труба повышенной эксплуатационной надежности для нефтепромыслового оборудования 2019
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Рогова Ксения Владимировна
  • Павлов Александр Александрович
  • Родионова Ирина Гавриловна
RU2719618C1
Бесшовная труба нефтяного сортамента из высокопрочной коррозионно-стойкой стали мартенситного класса и способ ее получения 2021
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Нурмухаметова Марианна Рашидовна
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Маковецкий Александр Николаевич
RU2807645C2
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2700440C1
СТАЛЬ ДЛЯ СВАРОЧНОЙ ПРОВОЛОКИ 1994
  • Вихлевщук Валерий Антонович[Ua]
  • Поляков Валерий Александрович[Ua]
  • Семенов Станислав Евгеньевич[Ua]
  • Тильга Олег Степанович[Ua]
  • Макаров Константин Григорьевич[Ua]
  • Омесь Юрий Николаевич[Ua]
  • Любимов Иван Михайлович[Ua]
  • Кекух Анатолий Владимирович[Ua]
  • Боровиков Геннадий Федорович[Ua]
  • Иващенко Геннадий Михайлович[Ua]
  • Губов Андрей Иванович[Ua]
RU2063467C1
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И ЭЛЕКТРОСВАРНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2009
  • Немтинов Александр Анатольевич
  • Голованов Александр Васильевич
  • Никонов Сергей Викторович
  • Филатов Николай Владимирович
  • Попов Евгений Сергеевич
  • Зайцев Александр Иванович
  • Родионова Ирина Гавриловна
  • Бакланова Ольга Николаевна
  • Ефимова Татьяна Михайловна
  • Меньшикова Галина Алексеевна
  • Марков Дмитрий Всеволодович
  • Головинов Валерий Александрович
  • Тропин Дмитрий Владимирович
  • Бегунов Илья Абидуллаевич
  • Лукманов Фаниль Эдвардович
RU2433198C2
НИЗКОЛЕГИРОВАННАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2007
  • Афонасьев Евгений Васильевич
  • Воржев Александр Владимирович
  • Рузаев Дмитрий Григорьевич
  • Хорунженко Вячеслав Михайлович
  • Яценко Александр Иванович
RU2362814C2
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ И НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ 2010
  • Чикалов Сергей Геннадьевич
  • Тазетдинов Валентин Иреклеевич
  • Ладыгин Сергей Александрович
  • Александров Сергей Владимирович
  • Прилуков Сергей Борисович
  • Белокозович Юрий Борисович
  • Медведев Александр Павлович
  • Ярославцева Оксана Владимировна
RU2437955C1
ЖАРОСТОЙКАЯ СТАЛЬ 2009
  • Дегтярев Александр Федорович
  • Егорова Марина Александровна
  • Орлов Александр Сергеевич
  • Ершов Николай Сергеевич
  • Михайлов Алексей Геннадьевич
  • Белявский Павел Борисович
  • Кнохин Валерий Георгиевич
RU2415963C2
КОНСТРУКЦИОННАЯ СТАЛЬ 1992
  • Закеев Владимир Николаевич[Ru]
  • Гусейнов Рафик Курбанович[Az]
  • Шаров Борис Петрович[Ru]
  • Битков Владимир Николаевич[Ru]
RU2023049C1

Иллюстрации к изобретению RU 2 073 739 C1

Реферат патента 1997 года КОНСТРУКЦИОННАЯ СТАЛЬ

Изобретение относится к металлургии, в частности к низколегированной стали, предназначенной для изготовления металлических конструкций, устойчивых к морской коррозии и низким температурам. Сущность: сталь, содержащая углерод, кремний, марганец, хром, алюминий, титан и железо, дополнительно содержит азот и кальций при следующих соотношениях компонентов, мас.%: С 0,10-0,18; Si 0,50-1,10; Mn 0,30- 0,80; Аl 0,01-0,05; Ti 0,005-0,020; N 0.008-0,025; Са 0,005-0,020 и железо - остальное. Сталь обладает хорошим сочетанием стойкости к морской коррозии и механических свойств. При достаточно высоких прочностных свойствах предлагаемая сталь обладает высокой пластичностью. Кроме того, данная сталь по величине ударной вязкости отвечает требованиям, предъявляемым к сталям для эксплуатации в условиях Севера. Данной сталью можно заменить ряд более дорогих конструкционных сталей для металлических сооружений портов, в частности для изготовления шпунтовых свай. 3 табл.

Формула изобретения RU 2 073 739 C1

Конструкционная сталь, содержащая углерод, кремний, марганец, алюминий, титан и железо, отличающаяся тем, что она дополнительно содержит кальций и азот при следующем соотношении компонентов, мас.

Углерод 0,1 0,18
Кремний 0,5 1,1
Марганец 0,3 0,8
Алюминий 0,01 0,05
Титан 0,01 0,1
Кальций 0,005 0,02
Азот 0,008 0,025
Железо Остальноеа

Документы, цитированные в отчете о поиске Патент 1997 года RU2073739C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Марочник сталей и сплавов
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
Опытная партия
Паровоз для отопления неспекающейся каменноугольной мелочью 1916
  • Драго С.И.
SU14A1

RU 2 073 739 C1

Авторы

Аршанский Михаил Иосипович[Ru]

Александров Борис Леонидович[Ru]

Беловодченко Анатолий Иванович[Ru]

Заболотный Василий Васильевич[Ru]

Комратов Юрий Сергеевич[Ru]

Киричков Анатолий Александрович[Ru]

Коржавин Владимир Андреевич[Ua]

Куклинский Марат Израилович[Ru]

Пирогов Виталий Александрович[Ua]

Пучиков Александр Владимирович[Ua]

Рабинович Александр Вольфович[Ua]

Тарасьев Михаил Иванович[Ua]

Черненко Валерий Тарасович[Ua]

Чернушевич Андрей Владимирович[Ru]

Даты

1997-02-20Публикация

1996-04-19Подача