Изобретение относится к получению селективных сорбентов для извлечения токсических, а также ценных компонентов из водных сред.
Известны способы получения сорбентов по типу "змея в клетке" путем полимеризации и поликонденсации полифункциональных соединения внутри пористых катионов и полиамфолитов [1,2]
Известен также способ получения сорбента путем сорбции на макропористом анионите Dowex-11 (анионит полимеризационного типа, содержащий сильноосновные группы четвертичного аммониевого основания) фенола в качестве противоиона с последующей его конденсацией с формальдегидом внутри пор анионита и получением сорбента по типу "змея в клетке". Этот способ выбран за прототип [3]
Такой сорбент содержит как анионообменные, так и катионообменные группы и может быть использован для одновременного извлечения катионов и анионов из водных сред. Однако он не используется при извлечении таких металлов, как ртуть и серебро, являющихся как высокотоксичными, так и ценными веществами.
Задачей изобретения является получение ионообменного сорбента типа "змея в клетке", эффективного и селективного при извлечении ртути и серебра из водных сред.
Поставленная задача решается путем использования в качестве соединений, сорбируемых на анионите и затем конденсирующихся с формальдегидом, серусодержащих соединений.
Способ получения ионита заключается в сорбции на макропористом анионите сульфид-ионов, источником которых могут являться водорастворимые сульфиды и гидросульфиды металлов или газообразный сероводород, с последующей конденсацией сорбированных сульфид-ионов с формальдегидом внутри пор анионита по типу "змея в клетке".
В качестве анионита используют макропористые аниониты полимеризационного или поликонденсационного типа как сильноосновные, так и слабоосновные, т.е. содержащие как группы четвертичного аммонивого основания, так и/или первичные и вторичные аминогруппы, например АВ-17-10п (сильноосновный анионит полимеризационного типа); АН-221 (слабоосновный анионит полимеризационного типа); ЭДЭ-10-п (поликонденсационный эпоксиполиаминовый анионит, содержащий слабоосновные аминогруппы и до 10% сильноосновных групп) и другие.
Пример 1. Через 10 г сильноосновного анионита АВ-17-10п (стирол-дивинилбензольная матрица) со статической обменной емкостью (СОЕ), равной 2,75 мМ/г, пропускают 100 мл 0,1 н. водного раствора сульфида натрия для сорбции сульфид-ионов, анионит промывают водой и переносят в которую добавляют 60 мл смеси формалина и воды (1:1) и выдерживают при перемешивании без нагревания в течение 2 ч. Готовый продукт промывают водой, 3%-ной щелочью и снова водой. Содержание серы в готовом продукте составляет 1,20 мМ/г.
Пример 2. По примеру 1 через анионит АВ-17-10п пропускают 100 мл 0,1н. водного раствора гидросульфида натрия. Готовый продукт содержит 1,28 мМ/г серы и его СОЕ=3,34 мМ/г.
Пример 3. Через 10г слабоосновного анионита АН-221 (стирол-дивинилбензольная матрица, СОЕ=3б334мМ/г) пропускают смесь воздуха и сероводорода для сорбции (концентрация H2S 20 мг/л, скорость подачи газовой смеси 15 л/ч, время подачи смеси 1 ч 20 мин). Далее по примеру 1. Содержание серы в готовом продукте 1,00 мМ/г, СОЕ=2,52 мМ/г.
Пример 4. Через 10 г анионита ЭДЭ-10п, содержащего как слабо-, так и сильноосновные группы (эпоксиполиаминовая матрица, СОЕ=9,02 мМ/г пропускают газовоздушную смесь для сорбции сероводорода (концентрация H2S 40 мг/л, скорость подачи смеси 15 л/ч, время подачи 2 ч). Анионит переносят в реакционную колбу и по примеру 1 обрабатывают 120 мл смеси формалина и воды и промывают. Содержание серы в готовом продукте 2,68 мМ/г, СОЕ 6,89 мМ/г.
Синтезированные сорбенты были испытаны на сорбцию ртути из хлоридных сред при pH 1 2 и на сорбцию серебра из азотнокислых сред при pH 1 2. Коэффициенты распределения, определенные по изотопам Ag и Hg на фоне микроконцентраций (1 мг/л) неактивных Ag и Hg, составили для Hg 1140 2240 и для Ag 4720 6220 в зависимости от типа исходного ионита. Максимальные величины емкости по ртути составили для сорбентов по примерам 1 и 2 2,0 мМ/г, для сорбентов по примерам 3 и 4 1,9 мМ/г и 1,8 мМ/г соответственно. Максимальные величины емкости по серебру для сорбентов по примерам 1 и 2 составили 1,2 мМ/г, для сорбентов по примерам 3 и 4- 1,0 мМ/г и 1,4 мМ/г соответственно.
Синтезированные сорбенты могут быть регенерированы способами, рекомендованными для ионитов с метилтиольными группами [4]
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ | 2014 |
|
RU2579133C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА РУТЕНИЯ | 2016 |
|
RU2605255C1 |
Способ получения сорбента для извлечения селена, теллура | 2017 |
|
RU2660148C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ОРГАНОМИНЕРАЛЬНОГО СОРБЕНТА | 1994 |
|
RU2082496C1 |
Способ сорбционного извлечения редкоземельных элементов в присутствии фторид-ионов | 2023 |
|
RU2824510C1 |
Способ получения комплексообразующего ионита | 1986 |
|
SU1479465A1 |
СОЕДИНЕНИЕ НА ОСНОВЕ МАКРОПОРИСТОГО СОПОЛИМЕРА СТИРОЛА И ДИВИНИЛБЕНЗОЛА В КАЧЕСТВЕ ИММУНОСОРБЕНТА ДЛЯ УДАЛЕНИЯ ДИФТЕРИЙНОГО ТОКСИНА ИЗ БИОЛОГИЧЕСКИХ ЖИДКОСТЕЙ ОРГАНИЗМА | 1995 |
|
RU2081170C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ОСМИЯ ИЗ КИСЛЫХ РАСТВОРОВ | 1993 |
|
RU2057072C1 |
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО СОРБЕНТА | 1996 |
|
RU2105015C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ УРАНОВЫХ РАСТВОРОВ | 2016 |
|
RU2627838C1 |
Способ получения сорбента относится к получению селективных сорбентов для извлечения токсических, а также ценных компонентов из водных сред. Способ заключается в сорбции на макропористых анионитах полифункционального соединения с последующей его конденсацией с формальдегидом внутри пор анионита, при этом в качестве полифункционального соединения используют растворимые сульфиды или гидросульфиды металлов или газообразный сероводород, а в качестве анионитов - макропористые аниониты полимеризационного или поликонденсационного типа, содержащие группы четвертичного аммониевого основания и/или первичные и вторичные аминогруппы. Способ позволяет получить сорбент для селективного и эффективного извлечения ионов ртути и серебра из различных водных сред.
Способ получения сорбента путем сорбции на макропористых анионитах полифункционального соедиения с последующей его конденсацией с формальдегидом в порах анионита, отличающийся тем, что в качестве полифункционального соединения используют водорастворимые сульфиды и гидросульфиды металлов или сероводород, а в качестве анионитов используют макропористые аниониты полимеризационного или поликонденсационного типа, содержащие группы четвертичного аммониевого основания и/или первичные и вторичные аминогруппы.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Способ получения ионитов | 1975 |
|
SU530043A1 |
Топка с несколькими решетками для твердого топлива | 1918 |
|
SU8A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Патент США N 3875085, кл | |||
Колосниковая решетка для генераторов | 1918 |
|
SU521A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Патент США N 3803059, кл | |||
Колосниковая решетка для генераторов | 1918 |
|
SU521A1 |
Даты
1997-06-10—Публикация
1995-05-05—Подача