СИСТЕМА КУРСА И ВЕРТИКАЛИ И СПОСОБ ОПРЕДЕЛЕНИЯ МАГНИТНОГО КУРСА Российский патент 1997 года по МПК G01C21/08 

Описание патента на изобретение RU2085850C1

Изобретение относится к области точного приборостроения и может быть использовано в системах навигации.

Известен способ определения магнитного курса, определяющий напряженность магнитного поля Земли с помощью двухкоординатного магнитомерта. Двухкоординатный магнитометр, устанавливаемый в плоскости горизонта, определяет напряженность магнитного поля Земли по двум взаимно перпендикулярным координатам (осям), т.е. определяет Hη,Hξ [1]
Угол магнитного курса j определяется по формуле:

где
Hη,Hξ напряженность магнитного поля Земли в плоскости горизонта по осям h,ξ
Конструктивно двухкоординатный магнитометр устанавливают в маятниковом подвесе, который обеспечивает поддержание магнитометра в плоскости горизонта при равномерном прямолинейном полете летательного аппарата. Информация о магнитном курсе с двухкоординатного магнитометра используется только при равномерном прямолинейном полете, в противном случае информация не достоверна.

Наиболее близким аналогом устройства является инерциальная курсовертикаль, содержащая магнитометр в виде индуктивного курса [2]
Наиболее близким аналогом способа является способ определения магнитного курса, включающий измерение напряженности магнитного поля Земли, измерение в осях летательного аппарата угла тангажа и крена и вычисление магнитного курса [2]
Недостатком известного устройства является сложность его конструкции.

Недостатком известного способа является невозможность определения магнитного курса в случаях, отличных от прямолинейного равномерного полета летательного аппарата.

Техническим результатом от использования изобретения является упрощение конструкции и увеличение точности измерения.

В части устройства это достигается тем, что магнитометр выполнен трехкоординатным и жестко связан с летательным аппаратом, причем три выхода магнитометра и два выхода гидроскопической вертикали по углам тангажа и крена соединены, соответственно, с пятью входами вычислителя магнитного курса.

Вместо гидроскопической вертикали может использоваться гидроскопическая курсовертикаль, так как углы тангажа и крена, определяемые гидроскопической вертикалью и гидроскопической курсовертикалью, тождественно равны.

В части способа это достигается тем, что напряженность магнитного поля Земли определяют по трем взаимно перпендикулярным осям X, Y, Z летательного аппарата, а магнитный курс j определяют по формуле:

где
Hx, Hy, Hz значения напряженности магнитного поля Земли в осях X, Y, Z летательного аппарата;
ν,γ значения углов, соответственно, тангажа и крена в тех же осях X, Y, Z.

На фиг. 1 представлена структурная схема системы курса и вертикали; на фиг. 2 диаграмма пересчета с осей X, Y, Z на оси X', Y', Z'; на фиг.3 - диаграмма пересчета с осей X', Y', Z' на оси X'', Y'', Z''
Работает система курса и вертикали следующим образом.

Трехкоординатный магнитометр 1 жестко связан с системой координат X, Y, Z летательного аппарата и измеряют напряженность магнитного поля Земли по трем координатам (осям) X, Y, Z, т.е. определяет Hx, Hy, Hz
Гидроскопическая вертикаль 2 (в том числе гидроскопическая курсовертикаль) также жестко привязана к системе координат X, Y, Z и определяет углы тангажа n и крена g летательного аппарата.

Угол тангажа n это угол между осью X и проекцией X на плоскость горизонта.

Угол крена g это угол между осью Y и линией пересечения плоскости горизонта с плоскостью YOZ. Углы тангажа и крена в цифровой форме используются прежде всего в системе навигации летательного аппарата.

Три выхода магнитометра Hx, Hy, Hz и два выхода вертикали n,γ соединены, соответственно, с пятью входами вычислителя 3.

Таким образом, углы тангажа n и крена g летательного аппарата используются дополнительно для определения магнитного курса.

Вычислитель 3 по пяти параметрам Hx, Hy, Hz, n,γ определяет магнитный курс, т.е. выход вычислителя формирует магнитный курс.

Таким образом, в системе курса и вертикали исключен маятник подвес магнитометра за счет перевода задачи на вычислительную технику.

Способ определения магнитного курса осуществляют следующим образом.

Известно, что угол магнитного курса j это угол между проекцией вектора напряженности магнитного поля Земли на плоскость горизонта и проекцией оси X на плоскость горизонта.

Осуществляют пересчет информации из системы координат XYZ в систему координат X'Y'Z', а затем в систему координат X''Y''Z'' посредством двух разворотов. Первый разворот осуществляют вокруг оси X до совпадения оси Y с плоскостью горизонта. Эту систему координат обозначим X'Y'Z'. Второй разворот осуществляют вокруг оси Y' до совпадения оси X'(X) с плоскостью горизонта. Эту систему координат обозначим X''Y''Z''
Получают
Hx' Hx

Hy'' Hy'
Подставив значения Hx', Hy', Hz' в выражение 2, получают

Т. о. выражение 3 представляет собой алгоритм определения магнитного курса, не имеющего зависимости от механических воздействий.

Похожие патенты RU2085850C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ МАГНИТНОГО КУРСА ПОДВИЖНОГО ОБЪЕКТА 2016
  • Каплин Александр Юрьевич
  • Степанов Михаил Георгиевич
RU2629539C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТИННОГО КУРСА С ПОМОЩЬЮ ДВУХКАНАЛЬНОГО ГИРОСКОПИЧЕСКОГО ДАТЧИКА УГЛОВОЙ СКОРОСТИ 2000
  • Редькин С.П.
RU2176780C1
СПОСОБ НАСТРОЙКИ ИНКЛИНОМЕТРА И КОНТРОЛЯ ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ 1994
  • Горбатенков Н.И.
  • Дремин А.М.
  • Жилинский А.В.
  • Колосов О.С.
  • Салов Е.А.
  • Федоров А.В.
  • Федоров Д.А.
  • Цепляев Н.А.
RU2085852C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ ОБЪЕКТА В ТОЧКЕ ОСТАНОВА 1993
  • Горбатенков Н.И.
  • Дремин А.М.
  • Жилинский А.В.
  • Федоров А.В.
  • Цепляев Н.А.
RU2062872C1
КОМПЛЕКСНАЯ СИСТЕМА ОПРЕДЕЛЕНИЯ КУРСА 2000
  • Никулин А.С.
  • Джанджгава Г.И.
  • Колосов А.И.
  • Никулина А.А.
  • Орехов М.И.
  • Рогалев А.П.
  • Шелепень К.В.
RU2178146C1
СПОСОБ ИЗМЕРЕНИЯ КУРСА ЛЕТАТЕЛЬНОГО АППАРАТА 2000
  • Никулин А.С.
  • Джанджгава Г.И.
  • Колосов А.И.
  • Никулина А.А.
  • Рогалев А.П.
  • Шелепень К.В.
  • Аксиненко Г.Г.
RU2178145C1
СПОСОБ ГИРОКОМПАСИРОВАНИЯ С ПРИМЕНЕНИЕМ ГИРОСКОПИЧЕСКОГО ДАТЧИКА УГЛОВОЙ СКОРОСТИ, УСТАНОВЛЕННОГО НА УПРАВЛЯЕМУЮ В АЗИМУТЕ И СТАБИЛИЗИРОВАННУЮ В ПЛОСКОСТИ МЕСТНОГО ГОРИЗОНТА ПЛАТФОРМУ 2002
  • Редькин С.П.
RU2210740C1
СПОСОБ АЛГОРИТМИЧЕСКОЙ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ГИРОКОМПАСИРОВАНИЯ С ПРИМЕНЕНИЕМ ГИРОСКОПИЧЕСКОГО ДАТЧИКА УГЛОВОЙ СКОРОСТИ 2001
  • Редькин С.П.
RU2194948C1
СПОСОБ ГИРОКОМПАСИРОВАНИЯ С ПРИМЕНЕНИЕМ ГИРОСКОПИЧЕСКОГО ДАТЧИКА УГЛОВОЙ СКОРОСТИ И КОМБИНИРОВАННОЙ КОМПЕНСАЦИИ ЕГО ДРЕЙФА 2001
  • Редькин С.П.
RU2189564C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТИННОГО КУРСА С ПОМОЩЬЮ ГИРОСКОПИЧЕСКОГО ДАТЧИКА УГЛОВОЙ СКОРОСТИ 1995
  • Редькин С.П.
RU2098766C1

Иллюстрации к изобретению RU 2 085 850 C1

Реферат патента 1997 года СИСТЕМА КУРСА И ВЕРТИКАЛИ И СПОСОБ ОПРЕДЕЛЕНИЯ МАГНИТНОГО КУРСА

Использование: в области точного приборостроения для систем навигации. Сущность изобретения: устройство содержит трехкоординатный магнитометр 1, гидроскопическую вертикаль 2, вычислитель. Измерение напряженности магнитного поля Земли по трем взаимно перпендикулярным осям летательного аппарата, измерение углов тангажа и крена летательного аппарата и вычисление магнитного курса по формуле. 2 с.п. ф-лы, 3 ил.

Формула изобретения RU 2 085 850 C1

1. Система курса и вертикали, содержащая магнитометр, гироскопическую вертикаль, вычислитель магнитного курса, отличающаяся тем, что магнитометр выполнен трехкоординатным и жестко связан с летательным аппаратом, причем три выхода магнитометра и два выхода гироскопической вертикали по углам тангажа и крена соединены соответственно с пятью входами вычислителя магнитного курса. 2. Способ определения магнитного курса, включающий измерение напряженности магнитного поля Земли, измерение в осях Х, Y, Z летательного аппарата угла тангажа V и угла крена γ, вычисление магнитного курса, отличающийся тем, что напряженность магнитного поля Земли определяют по трем взаимно перпендикулярным осям Х, Y, Z летательного аппарата, а магнитный курс ψ определяют по формуле

где НX, НY, НZ значения напряженности магнитного поля Земли в осях Х, Y, Z летательного аппарата;
V,γ - значения углов соответственно тангажа и крена в тех же осях Х, Y, Z.

Документы, цитированные в отчете о поиске Патент 1997 года RU2085850C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппаратура измерения курса и вертикали на воздушных судах гражданской авиации/ Под ред
П.А.Иванова.- М.: Машиностроение, 1989, с
Приспособление для соединения пучка кисти с трубкою или втулкою, служащей для прикрепления ручки 1915
  • Кочетков Я.Н.
SU66A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Там же, с
Льночесальная машина 1923
  • Чепуль Э.К.
SU245A1

RU 2 085 850 C1

Авторы

Будкин В.Л.

Джанджгава Г.И.

Федоров А.В.

Цепляев Н.А.

Даты

1997-07-27Публикация

1994-02-03Подача