РЕКОМБИНАНТНАЯ ФАГОВАЯ ДНК М13 POL Т7 И РЕКОМБИНАНТНЫЙ ШТАММ ФАГА М13 - ПРОДУЦЕНТ РНК-ПОЛИМЕРАЗЫ ФАГА Т7 Российский патент 1997 года по МПК C12N15/52 C12N7/01 

Описание патента на изобретение RU2089613C1

Изобретение относится к биотехнологии, в частности к генетической инженерии, и представляет собой рекомбинантную фаговую ДНК M13polT7, содержащую ген РНК-полимеразы фага T7 и штамм фага M13polT7-продуцент РНК-полимеразы фага T7.

РНК-полимераза фага T7 широко используется при получении РНК-зондов для блот-гибридизации; получения биологически активных РНК, изучения процессинга эукариотических РНК, экзон-интрон картирования геномной ДНК [1] Кроме того, фермент может быть использован для мечения РНК с помощью радиоактивных или биотинилированных нуклеозидтрифосфатов, а в определенных системах для секвенирования нуклеиновых кислот [2]
Однако, штамм E.coliHMS174, трансформированный данной плазмидой, продуцирует T7 РНК-полимеразу с низким уровнем, который составляет лишь 10-20% от суммарного белка.

В последнее время в качестве клонирующих векторов начали активно использовать нитчатые фаги E.coli. Созданы различные векторные производные фагов: M13, fd и fi [4] Преимуществом векторов данного типа является то, что нитчатые фаги в процессе инфекции не лизируют бактериальные клетки, а копийность репликативной формы фаговой ДНК в клетке достигает 200-300 молекул, что обеспечивает высокую дозу клонированного гена, а следовательно,и достаточно высокий выход РНК-полимеразы фага T7. Кроме того, фаговую ДНК легче выделять и использовать по сравнению с плазмидной ДНК.

Известен фаг M13polT7-1, используемый в векторной системе, способной обеспечить экспрессию чужеродных генов в клетках E.coli, находящихся под контролем поздних промоторов фага T7.

Данная векторная система основана на раздельном введении генов в бактерию путем предварительной трансформации клеток E.coli плазмидой с экспрессируемым геном с последующим инфицированием их бактериофагом M13polT7-1, который выступает только в качестве носителя гена РНК-полимеразы, но не является ее продуцентом.

Известна рекомбинантная плазмида PAR1219, содержащая ген РНК-полимеразы фага T7.

Технической задачей предлагаемого изобретения является увеличение выхода РНК-полимеразы фага T7 в клетках E.coli.

Задача решается конструированием рекомбинантного фага M13polT7, обеспечивающего повышенный синтез фермента РНК-полимеразы фага T7 в бактериальных клетках.

Фаговая ДНК M13polT7, содержащая фрагмент ДНК, кодирующий РНК-полимеразу фага T7, имеет молекулярную массу 6,6 МДа (размер 9949 н.п.) и состоит из следующих элементов:
векторного BamHI фрагмента фага M13mp10, размером 7244 н.п.

Sau3A-Sau3A фрагмента плазмиды PAR1219, содержащего ген РНК-полимеразы фага T7, размером 2705 н.п.

plac-lacuv5 промотора;
имеет:
уникальный сайт рестрикции: BamHI;
маркерный ген: lacZ.

Штамм фага M13polT7 имеет следующие культуральные и морфологические свойства.

Морфология негативных колоний на твердой среде: образует прозрачные бляшки диаметром 2 мм.

Функциональные свойства: нелизирующий фаг.

Оптимум роста: (37+1)oC на YT среде.

Штамм депонирован во Всесоюзной коллекции промышленных микроорганизмов института "ВНИИгенетика" под номером ВКПМ РН-714.

Сущность предлагаемого изобретения заключается в том, что фрагмент ДНК, кодирующий РНК-полимеразу фага T7, вводят в векторную фаговую ДНК нитчатого фага M13. Полученный рекомбинантный фаг обеспечивает синтез РНК-полимеразы фага T7 в клетках E.coli.

Способ конструирования M13polT7 состоит в следующем: в исходный фаг M13mp10 [6] по уникальному сайту BamHI вводят фрагмент из плазмиды PAR1219 [3] кодирующий РНК-полимеразу фага T7.

Полученный фаг M13polT7 в клетках E.coli обеспечивает синтез РНК-полимеразы фага T7 (25-30% от суммарного белка).

Таким образом, впервые получена фаговая ДНК, обеспечивающая в инфицированных ею клетках E.coli синтез белка, обладающего свойствами РНК-полимеразы фага T7, за счет экспрессии гена РНК-полимеразы фага T7.

На фиг.1 дана схема конструирования фага M13polT7 со следующими обозначениями: polT7 ген РНК-полимеразы фага T7, SD сайт связывания рибосом, plac-lacuv5 промотор, lacZ часть гена β галактозидазы; на фиг.2 -денситограмма электрофоретически разделенных лизатов клеток E.coli, инфицированных фагом M13polT7. Заштрихован пик, соответствующий белку polT7.

Сущность предлагаемого изобретения раскрывается в следующих примерах.

Пример 1. Способ конструирования рекомбинантного фага M13polT7. 1 мкг ДНК векторного фага M13mp10 [6] расщепляют эндонуклеазой рестрикции BamHI (10 единиц) в буфере, содержащем 10mM трис-HCl pH 7,5, 50 mM NaCl, 10 mM MgCl2,1mM дитиотрейтола. Реакцию проводят 1 ч при 37oC. Анализ полноты гидролиза проводят с помощью электрофореза. Препарат депротеинизируют с помощью фенольной экстракции, ДНК осаждают этанолом и ресуспендируют в TE-буфере, содержащем 10mM трис-HCl pH 8,0 и 1 mM ЭДТА.

Препарат индивидуального фрагмента размером 2705 н.п. содержащего ген РНК-полимеразы фага T7, получают при Sau3A гидролизе плазмиды pAR1219 [3] Выделение индивидуального фрагмента осуществляют путем электрофоретического разделения в 6%-ном полиакриламидном геле с последующей электроэлюцией.

Лигирование смеси гидролизованного фага M13mp10 (0,1 мкг) и фрагмента, кодирующего ген РНК-полимеразы (0,1 мкг),проводят с помощью ДНК-лигазы фага T4 (4 единицы) в объеме 30 мкл (инкубацию ведут в течение 10 ч при 12oC).

Полученные фаги, не имеющие синюю окраску на индикаторных чашках с Ygal (0,1 мкг/мл) и IPTG (1 Mm), анализируют рестрикционным анализом репликативной формы этих фагов с помощью эндонуклеазы рестрикции HaeIII.

Рекомбинантная фаговая ДНК, имеющая в своем составе фрагмент, содержащий ген T7 РНК-полимеразы в нужной ориентации (под контролем lacuv5 промотора), обозначена M13polT7.

Пример 2. Экспрессия гена РНК-полимеразы фага T7 в составе фага M13. Для исследования экспрессии гена РНК-полимеразы фага T7 клетки E.coli DΗ5αF′ инфицируют фагами: M13polT7 и M13mp10. Клетки E.coli DΗ5αF′ подращивают до оптической плотности (ОП) 0,6-0,7 ед. (590 нм) на LB среде при 37oC. Затем вносят фаг M13polT7, а в контрольном опыте фаг M13mp10; а также индуктор - IPTG (изопропил β D тиогалактозид) (0,1 мМ). Соотношение клетка: фаг - 1:1 (множественность заражения).

Суспензию культивируют в течение 6 ч, что позволяет получать максимальный выход целевого белка в случае фага M13polT7.

На электрофореграмме разделения белков из клеток E.coli, инфицированных фагом M13polT7, идентифицируют белок (М.в.98000), отсутствующий в клетках, инфицированных векторным фагом M13mp10.

Определение ферментной активности проводят, используя в качестве специфической матрицы ДНК фага T7.

Исходя из данных электрофореза уровень продукции РНК-полимеразы, синтезированной рекомбинантным фагом, составляет примерно 25-30% от суммарного белка.

Пример 3. Выделение и титрование фага. К культуральной жидкости после отделения инфицированных клеток добавляют 0,25 исходного объема раствора ПЭГ (содержит полиэтиленгликоль 6000 20 г, NaCl 10 г, воду до 100 мл) и оставляют на 15 мин при 20oC. Фаг отделяют центрифугированием (15 мин) и ресуспендируют в буферном растворе, содержащем 20 мМ трис-HCl pH 7,5, 20 мМ NaCl, 1мМ ЭДЕА (1/10 исходного объема). Титрование фага проводят по стандартной методике. Обычно получают препараты фага с титром 10-10 БОЕ/мл.

Пример 4. Очистка рекомбинантной РНК-полимеразы фага T7. Клетки E.coli DH5αF′, инфицированные фагом M13polT7, осаждают центрифугированием. 6 г биомассы суспендируют в 160 мл 50 мМ трис-HCl буфера pH 7,9,содержащего 2 мМ ЭДТА, 0,1 мМ дитиотрейтола, 200 мМ NaCl, 5% глицерина и 10 мг лизоцима. Клетки разрушают ультразвуком в течение 1 мин и центрифугируют 30 мин при 1000 об/мин. К супернатанту добавляют раствор стрептомицинсульфата до конечной концентрации 0,2% при постоянном перемешивании в течение 5 мин. Осадившиеся нуклеиновые кислоты удаляют центрифугированием при 15000 об/мин в течение 20 мин.

К супернатанту, содержащему РНК-полимеразу фага T7, добавляют сульфат аммония до 50% -ного насыщения. Суспензию центрифугируют 30 мин при 10000 об/мин. Осадок растворяют в 40 мл 10 мМ калий-фосфатного буфера pH 8,0, содержащего 10 mM β -меркаптоэтанола, 1 mM ЭДТА, 12% глицерины (буфер А) и 0,15М NACl, подвергают диализу против этого же буфера в течение 12 ч.

Обессоленный раствор фермента наносят на колонку (1.5•1.5) с фосфоцеллюлозой Р11.

РНК-полимеразу фага T7 элюируют с колонки градиентом NaCl (0,25М-0,5М) в буфере А РНК-полимераза элюируется при концентрации NaCl 0,25М-0,4М. Фракции, содержащие фермент, объединяют и наносят на колонку (1,5х6 см) с голубой декстран-сефарозой. Колонку промывают сначала 40 мл буфера А, содержащего 0.25М NaCl, затем 20 мл буфера А, содержащего 1 мМ ГТФ и 1 мМ АТФ.

Фермент элюируют 0,55М калий-фосфатным буфером pH 8,0, содержащим 1,5 мМ дитиотрейтола, 40 мМ ЭДТА и 12% глицерина.

Фракции, содержащие РНК-полимеразу фага T7, собирают и диализуют против буфера А, а затем концентрируют против 10мМ калий-фосфатного буфера pH 8.0, 10mM b меркаптоэтанола, 50% глицерина и 180 мМ KCl.

Таким образом, в результате разработанной схемы очистки получают 12•106 ед.акт. гомогенной РНК-полимеразы фага T7.

Выход по ферменту составляет 25% от исходно содержащегося фермента в биомассе.

С 1 г влажной биомассы получают 2•106 ед.акт. гомогенного фермента.

Список литературы:
1. KKrieg,P.A. Melton,D.A.Methods Enzymoll.155,397(1987).

2. Axelrood,V.D.Rramer,F.R. Biochemistry 24,5716(1985).

3. Davanloo,P. et al.Proc.Natl.Acad.Sci:USA 81,2035(1984).

4. Messing J. and Vieira J. Gene,1982,v.19.p7269-276.

5. А.А. Ильичев, Н.В.Меламенд, А.И.Закабунин и др. ДАН, 1988,т.303,N2,c. 496-498.

6. Single-atranded DNA Phages (1978). eds.Dehardt D.T.Dressler D.H. and Ray D.S. Cold Spring Harbor Laboratory,11724 Cold Spring Harbor,New York.

Похожие патенты RU2089613C1

название год авторы номер документа
ФРАГМЕНТ ДНК S54, КОДИРУЮЩИЙ ПОЛИПЕПТИД С АКТИВНОСТЬЮ ГАММА-ИНТЕРФЕРОНА, РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК, ОБЕСПЕЧИВАЮЩАЯ СИНТЕЗ ПОЛИПЕПТИДА С АКТИВНОСТЬЮ ГАММА-ИНТЕРФЕРОНА И ШТАММ ESCHERICHIA COLI - ПРОДУЦЕНТ ПОЛИПЕПТИДА С АКТИВНОСТЬЮ ГАММА-ИНТЕРФЕРОНА 1992
  • Татьков С.И.
  • Смирнова О.Ю.
  • Кищенко Г.П.
  • Петренко В.А.
RU2046144C1
ШТАММ БАКТЕРИЙ ESCHERICHIA COLI-ПРОДУЦЕНТ ФРАГМЕНТА КЛЕНОВА 1987
  • Кравченко В.В.
  • Петренко Л.А.
  • Дегтярев С.Х.
  • Хомов В.В.
  • Загребельный С.Н.
  • Ривкин М.И.
RU1602055C
СПОСОБ ВЫЯВЛЕНИЯ ВИРУСА ИНФЕКЦИОННОГО РИНОТРАХЕИТА КРУПНОГО РОГАТОГО СКОТА 1991
  • Глотов А.Г.
  • Семенихин В.И.
  • Ильичев А.А.
  • Орешкова С.Ф.
  • Батурина И.И.
  • Миненкова О.О.
  • Пузырев А.Т.
  • Тикунова Н.В.
  • Петренко В.А.
RU2054487C1
Штамм-продуцент фермента ДНК-зависимой РНК-полимеразы фага Т7 2022
  • Нагорных Максим Олегович
RU2825469C2
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pSS5, КОДИРУЮЩАЯ СИНТЕЗ РЕКОМБИНАНТНОГО ЧЕЛОВЕЧЕСКОГО АЛЬФА-2b ИНТЕРФЕРОНА, ШТАММ ESCHERICHIA COLI SS5 - ПРОДУЦЕНТ РЕКОМБИНАНТНОГО ЧЕЛОВЕЧЕСКОГО АЛЬФА-2b ИНТЕРФЕРОНА И СПОСОБ ПОЛУЧЕНИЯ ИНТЕРФЕРОНА АЛЬФА-2b 1999
  • Черепанов П.А.
  • Михайлова Т.Г.
  • Черепанов П.П.
  • Мартиненко Дмитрий Леонидович
  • Шевчук Александр Анатольевич
  • Федюкин В.С.
  • Николаев Т.М.
  • Толкачев Б.Б.
  • Свентицкий Е.Н.
  • Ураков Н.Н.
  • Калинин Ю.Т.
  • Денисов Л.А.
  • Тяготин Ю.В.
  • Мартюшин С.В.
  • Ищенко А.М.
  • Трофимов А.В.
  • Полякова Е.А.
  • Батарин В.И.
  • Шалаева О.Н.
  • Лисицкая В.И.
RU2165455C1
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК PESG, СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОЙ ПЛАЗМИДНОЙ ДНК PESG И ШТАММ БАКТЕРИЙ ESCHERICHIA COLI, СОДЕРЖАЩИЙ РЕКОМБИНАНТНУЮ ПЛАЗМИДНУЮ ДНК PESG, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПОЛУЧЕНИЯ ГИБРИДНОГО БЕЛКА, СОСТОЯЩЕГО ИЗ 485 А.К., ОБЛАДАЮЩЕГО АНТИГЕННЫМИ СВОЙСТВАМИ ПОВЕРХНОСТНОГО ГЛИКОПРОТЕИНА ВИРУСА Т-КЛЕТОЧНОГО ЛЕЙКОЗА ЧЕЛОВЕКА ПЕРВОГО ТИПА 1994
  • Гараев М.М.
  • Бобков А.Ф.
  • Санков М.Н.
RU2081172C1
Рекомбинатная плазмидная ДНК pGp 120 - 428, кодирующая гибридный белок с антигенными свойствами белка @ р 120 ВИЧ-1 1991
  • Белявская Валентина Александровна
  • Закабунин Александр Иванович
  • Долгова Ирина Николаевна
  • Ильичев Александр Алексеевич
  • Веревкина Констанция Николаевна
  • Юдина Ирина Викторовна
  • Красноборов Иван Иванович
  • Хрипин Юрий Львович
  • Петренко Валерий Александрович
SU1789562A1
Рекомбинантная плазмидная ДНК @ 435,кодирующая синтез ДНК-лигазы фага Т 4.способ ее конструирования и штамм @ . @ ВКМ в-1449-продуцент ДНК-лигазыфага Т4 1981
  • Таняшин В.И.
  • Солонин А.С.
  • Трояновский Б.М.
  • Баев А.А.
SU1122003A1
СПОСОБ И НАБОР ДЛЯ ПРОВЕДЕНИЯ ГЕНОМНОЙ ДАКТИЛОСКОПИИ 1992
  • Корохов Н.П.
  • Карпышев Н.Н.
  • Орешкова С.Ф.
  • Арыкова Т.М.
  • Батурина И.И.
  • Поповский А.В.
RU2081919C1
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК PQ_F35, КОДИРУЮЩАЯ ГИБРИДНЫЙ ПОЛИПЕПТИД F 35, ОБЛАДАЮЩИЙ АНТИГЕННЫМИ И ИММУНОГЕННЫМИ СВОЙСТВАМИ БЕЛКА VP 35 ВИРУСА МАРБУРГ, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ШТАММ БАКТЕРИЙ ESCHERICHIA COLI - СВЕРХПРОДУЦЕНТ РЕКОМБИНАНТНОГО ПОЛИПЕПТИДА F 35 1998
  • Сорокин А.В.
  • Разумов И.А.
  • Казачинская Е.И.
  • Качко А.В.
  • Иванова А.В.
  • Мишин В.П.
  • Букреев А.А.
  • Беланов Е.Ф.
  • Локтев В.Б.
  • Нетесов С.В.
RU2144565C1

Иллюстрации к изобретению RU 2 089 613 C1

Реферат патента 1997 года РЕКОМБИНАНТНАЯ ФАГОВАЯ ДНК М13 POL Т7 И РЕКОМБИНАНТНЫЙ ШТАММ ФАГА М13 - ПРОДУЦЕНТ РНК-ПОЛИМЕРАЗЫ ФАГА Т7

Использование: биотехнология, генная и белковая инженерия. Сущность изобретения: путем введения в ДНК векторного фага М13mp10 по уникальному сайту рестрикции BamH1 Sau3A-Sau 3A фрагмента плазмиды PAR 1219, содержащего ген РНК-полимеразы фага T7, сконструирована рекомбинантная ДНК M13polT7, на основе которой получен штамм фага М13 ВКПМ РН-714, обеспечивающий синтез ДНК - полимеразы Т7 с выходом 2•106 ед. акт/г влажной биомассы. 2 с.п. ф-лы., 2 ил.

Формула изобретения RU 2 089 613 C1

1. Рекомбинантная фаговая ДНК М13 polT7, имеющая размер 9949 п.о. молекулярную массу 6,6 МДа, состоящая из Bam HI фрагмента ДНК векторного фага М13 mp 10 размером 7244 п.о. Sau 3A Sau 3A фрагмента ДНК размером 2705 п.о. из плазмиды pAR 1219, кодирующего РНК-полимеразу фага Т7; plac lacuv 5 промотора,
и содержащая маркерный ген lac Z; уникальный сайт рестрикции Bam HI.
2. Рекомбинантный штамм фага М13 ВКПМ РН 714 продуцент РНК-полимеразы фага Т7.

Документы, цитированные в отчете о поиске Патент 1997 года RU2089613C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Ильичев А.А
и др
Докл
АН СССР
Т
Автоматический тормоз к граммофону 1921
  • Мысин М.С.
SU303A1
496, 1988
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Davanloo et al
Proc
Nat
Acad
Sci
Горный компас 0
  • Подьяконов С.А.
SU81A1

RU 2 089 613 C1

Авторы

Ильичев А.А.

Меламед Н.В.

Долгова И.Н.

Хомов В.В.

Сизов А.А.

Петренко В.А.

Даты

1997-09-10Публикация

1994-04-19Подача