КАТОДНАЯ МАССА ДЛЯ ТЕПЛОВОГО ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА Российский патент 1997 года по МПК H01M6/36 

Описание патента на изобретение RU2093928C1

Изобретение относится к области электротехники и может быть использовано при изготовлении катодной массы для теплового химического источника тока /ТХИТ/ на основе дисульфида железа.

Известна катодная масса для ТХИТ, содержащая дисульфид железа и солевой электролит [1]
Недостатком данной катодной массы является наличие пика напряжения в начале разряда и нестабильность потенциала разомкнутой цепи.

Наиболее близкой по технической сущности и достигаемому результату является катодная масса, содержащая дисульфид железа, солевой электролит, загущенный оксидом магния, и стабилизирующую добавку на основе соединений лития [2]
Недостаток данной активной массы связан с длительностью технологического процесса изготовления, обусловленной несколькими длительными режимами термообработки.

Целью настоящего изобретения является сокращение длительности изготовления катодной массы.

Указанная цель достигается тем, что в катодной массе для ТХИТ, содержащей дисульфид железа, загущенный солевой электролит и стабилизирующую добавку, в качестве указанной добавки используют гидроксид лития при следующем соотношении компонентов /мас./:
дисульфид железа 57 80
гидроксид лития 0,7 17
оксид магния 8,3 12
солевой электролит 11 14
Гидроксид лития /tпл 462oC/ является эффективным литирующим агентом. Варьируя содержание LiOH в исходной катодной массе, можно плавно изменять потенциал катода и, соответственно, максимальное напряжение элемента при заданном токе разряда.

LiOH и сплавы LiOH с галогенидами щелочных металлов имеют относительно низкие температуры плавления /например, смесь LiCl KCl LiOH /45 11,5 - 43,5 мас. / имеет tпл 280oC, а LiCl LiOH /42 мол. LiCl/ имеет tпл 268oC/, и при литировании катодной смеси литирующий агент находится в жидком состоянии, что ускоряет процесс химического взаимодействия лития с дисульфидом железа и обеспечивает однородность катодной массы. Благодаря этому обстоятельству удалось сократить время литирования до 70 180 мин при температуре 400 550oC, т. е. уменьшить в 2,5 24 раза по сравнению с временем, указанным в [3] и [4] Одновременно отпадает необходимость в промежуточных процессах дробления и перемешивания.

Минимальное количество дисульфида железа в катодной массе составляет 57 мас. Дальнейшее уменьшение этого количества приводит к существенному уменьшению емкости. Кроме того, снижается механическая прочность катодов при рабочей температуре ТХИТ.

Максимальное количество FeS2 в катодной массе 80 мас. При увеличении количества FeS2 больше 80 мас. имеет место нестабильность потенциала катода. Кроме того, катодная масса с большим содержанием FeS2 плохо прессуется.

Количество LiOH в катодной массе непосредственно связано с количеством активного вещества с требуемой удельной емкостью. Для получения LixFeS2, где x 0,05 1,5, необходимо от 0,7 мас. LiOH до 17 мас. LiOH. Уменьшение количества LiOH меньше 0,7 мас. приводит к нестабильности электрических характеристик в связи с трудностью обеспечения равномерного перемешивания, а увеличение количества LiOH больше 17 мас. приводит к значительному уменьшению величины НРЦ и Umax и падению емкости катода. Остальную часть катодной массы составляет загущенная электролитная смесь /от 19,3 до 26 мас./.

Состав солевого электролита строго не регламентируется и может быть изменен в зависимости от состава анода и технических требований, предъявляемых к источнику тока.

В качестве электролита могут быть использованы такие смеси, как LiCl - KCl, LiCl KCl LiF, LiCl LiB2 LiF и др. Загустителем этих электролитов должен применяться инертный по отношению к расплавленным щелочам оксид магния. Количество загустителя в смеси электролит-загуститель от ≈ 42 до 46 мас. а в катодной массе от 8,3 до 12 мас. Уменьшение количества MgO в катодной смеси меньше 8,3 мас. приводит к ухудшению механической прочности катодных таблеток, а увеличение количества MgO больше 12 мас. приводит к ухудшению электрических характеристик элементов в результате увеличения омического сопротивления катодных таблеток.

Остальную массу катодной смеси составляет солевой электролит. Если количество солевого электролита в катодной смеси больше 14 мас. то при нагревании элементов до рабочей температуры наблюдаются втеки электролита и деформация катодных таблеток. Уменьшение количества солевого электролита в катодной смеси менее 11,0 мас. приводит к снижению величины Umax, особенно резко это явление наблюдается при разряде элементов высокими плотностями тока и при понижении температуры разряда.

В табл. 1 приведены результаты испытаний элементов электрохимической системы LiSi FeS2 диаметром 35 мм, катоды которых выполнены из катодной массы различных составов. Масса катодной смеси во всех опытах составляла 2 г /0,208 г катодной смеси/см2/, масса электролитной таблетки 1,3 г /0,135 г электролитной смеси N31/см2/. Аноды представляли собой пластины из сплава литий-кремний /44% Li/ толщиной 0,5 мм, масса сплава 44% Li и 56% Si в аноде составляла ≈ 0,5 г /0,052 г LiSi/см2/.

Разряд проводился до Uкон 1,5 В. Наибольшее время работы показали элементы с составом катодной массы 75 мас. FeS2 + 5 мас. LiOH + 20 мас. электролитной смеси /8,7 мас. MgO + 11,3 мас. солевого электролита/.

С этим составом катодной массы были проведены испытания элементов плотностями тока от 50 до 500 мА/см2 в температурном диапазоне 400 - 640oC /см. акт испытаний, табл. 2/.

Из результатов испытаний следует, что характеристики элементов с катодами, выполненными из катодной массы предложенного состава, отличаются высокой устойчивостью и стабильностью значений НРЦ и Uраб. Величина НРЦ изменялась в пределах от 2,03 2,13 В /т.е. ΔНРЦ 0,1 В/ в температурном диапазоне 400 640oC /Dt 240oC/. Величина Umax для элементов, разряженных токами i 50 100 мА/см2, изменялась в этом же диапазоне от 1,98 2,07 /т.е. D Umax ≈ 0,09 В/.

При разряде током i 300 мА/см2 Umax изменялась от 1,88 до 2,05 В /DUmax 0,17 В/ в температурном диапазоне 450 640oC /Dt 190oC/, а при разряде током i 500 мА/см2 от 1,78 до 1,95 В /DU 0,17 В/ в диапазоне 500 640oC /Dt 140oC/.

Катоды, изготовленные из катодной массы предложенного состава, позволяют проводить разряды с высокими значениями КПИ активного катодного вещества.

Например, при разряде токами i 300 500 мА/см2 до конечного напряжения Uкон 1,5 В значения КПИ активного катодного вещества составляют 35,0 64,6% в диапазонах температур 500 640oC.

Использование катодной массы предложенного состава позволяет получить элементы, обладающие большой стабильностью электрических характеристик, таких как НРЦ и Umax, а также сократить время продолжительности процесса изготовления катодной массы в 4 -36 раз по сравнению с временем, указанным в работах [3, 4]

Похожие патенты RU2093928C1

название год авторы номер документа
Элемент термоактивируемого химического источника тока 2021
  • Захаров Валерий Вячеславович
  • Волкова Ольга Вячеславовна
  • Рженичев Владимир Васильевич
RU2768252C1
АКТИВНЫЙ МАТЕРИАЛ ЭЛЕКТРОДА ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА 1988
  • Абенэ А.В.
  • Кофман Г.П.
  • Невская Н.В.
  • Петухова А.И.
  • Смирнова Н.С.
RU2154326C2
ЦИЛИНДРИЧЕСКИЙ ХИМИЧЕСКИЙ ИСТОЧНИК ТОКА ВОЗДУШНО-ЦИНКОВОЙ СИСТЕМЫ 1992
  • Бычковский С.К.
  • Есаян Л.П.
  • Пилюс Н.Т.
  • Ярошевская И.П.
  • Кассюра В.П.
  • Осипова А.В.
RU2040833C1
ЭЛЕКТРОЛИТНАЯ МАССА И СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОЛИТА ДЛЯ ТЕПЛОВЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА 2019
  • Андраманова Марина Николаевна
  • Астахова Инга Владимировна
  • Вахнина Ольга Викторовна
  • Блох Анна Владимировна
  • Волгутов Валерий Юрьевич
  • Жогова Кира Борисовна
  • Калинина Ксения Эриховна
  • Конопкина Ирина Андреевна
  • Молькова Оксана Александровна
  • Усенко Светлана Ивановна
  • Чудинова Наталия Николаевна
RU2732080C1
ТЕПЛОВАЯ ЭЛЕКТРОХИМИЧЕСКАЯ БАТАРЕЯ 1987
  • Нахшин М.Ю.
  • Коробов В.А.
  • Попов А.В.
  • Смирнов Б.Е.
RU2091918C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОЛИТНОЙ СМЕСИ ДЛЯ ТЕПЛОВОГО ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА 1986
  • Абенз Анатолий Владимирович
  • Кофман Галина Петровна
  • Петухова Алла Ивановна
  • Смирнова Нина Сергеевна
SU1840220A1
ТЕПЛОВАЯ БАТАРЕЯ 2020
  • Архипенко Владимир Александрович
  • Иванов Владимир Михайлович
  • Фомин Иван Сергеевич
  • Тиханов Александр Николаевич
  • Поверенный Михаил Васильевич
RU2744416C1
ЭЛЕКТРОЛИТИЧЕСКОЕ ОСАЖДЕНИЕ ЛИТИИРОВАННЫХ ОКСИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ ПРИ ИСПОЛЬЗОВАНИИ ИСХОДНЫХ ПРЕДШЕСТВЕННИКОВ С НИЗКОЙ СТЕПЕНЬЮ ЧИСТОТЫ 2019
  • Атес, Мехмет, Н.
  • Басби, Джон, Д.
  • Киггинс, Чэдд, Т.
  • Кук, Джон, Б.
RU2784167C2
Улучшенные электрохимические элементы для применения в высокоэнергетичном источнике тока 2018
  • Ковач Андраш
  • Ллойд Дэвид
  • Браун Дэвид Пол
RU2786089C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОНЕНТОВ ЭЛЕКТРОХИМИЧЕСКОГО ЭЛЕМЕНТА ДЛЯ ТЕПЛОВЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА И КОНСТРУКЦИЯ ОСНАСТКИ ДЛЯ ИХ ИЗГОТОВЛЕНИЯ 2019
  • Верещагин Александр Иванович
  • Королева Ирина Викторовна
  • Приказчиков Александр Евгеньевич
  • Шевченко Юлия Викторовна
RU2745745C2

Иллюстрации к изобретению RU 2 093 928 C1

Реферат патента 1997 года КАТОДНАЯ МАССА ДЛЯ ТЕПЛОВОГО ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА

Использование: производство тепловых химических источников тока со стабильными характеристиками в начале разряда. Сущность изобретения: катодная масса содержит (мас. %): дисульфид железа 57 - 80; гидроксид лития 0,7 - 17; оксид магния 8,3 - 12; солевой электролит 11 - 14. 2 табл.

Формула изобретения RU 2 093 928 C1

Катодная масса для теплового химического источника тока, включающаяся дисульфид железа, загущенный солевой электролит и стабилизирующую добавку, отличающаяся тем, что, с целью сокращения длительности изготовления, в качестве указанной добавки использован гидроксид лития при следующем соотношении компонентов, мас.

Сульфид железа 57 80
Гидроксид лития 0,7 17
Оксид магния 8,3 12
Солевой электролит 11 14о

Документы, цитированные в отчете о поиске Патент 1997 года RU2093928C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Патент США N 4675256, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Патент США N 4731307, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 093 928 C1

Авторы

Абенэ А.В.

Кофман Г.П.

Курилюк С.Г.

Петухова А.И.

Смирнова Н.А.

Даты

1997-10-20Публикация

1991-02-06Подача