Изобретение относится к чувствительным слоям (пленкам), изменяющим свое электрическое сопротивление в присутствии аммиака, т.е. для измерения концентраций аммиака в газовой фазе, что может быть использовано в химической технологии и пищевой промышленности.
Известны поли-п-ксилиленовые пленочные материалы, содержащие кластеры металлов, в электронике, в катализе, в качестве поглощающих и отражающих систем в различных диапазонах излучений [1]
Получают металлсодержащие (Zn, Pb, Ag и др.) поли-п-ксилиленовые материалы путем совместной конденсации паров п-ксилилена и металла в высоком вакууме на охлаждаемую до низких температур подложку с последующим доведением полученного соконденсата до стабильного состояния термическим отогревом до комнатных температур или УФ-облучением [1]
Известно, что в качестве чувствительных пленок на аммиак используют пленочные материалы на основе полупроводниковой матрицы SnO2 с добавками оксидов PbOx и V2O5 [2] Сенсор на основе SnO2 пригоден для определения от 5•10-4 до 1•10-2% NH3 при рабочей температуре 400oC.
Основными недостатками сенсоров на основе SnO2 является необходимость подогрева до 400oC, что вызывает дрейф рабочих параметров и как следствие недостаточную долговечность.
Задача изобретения устранение перечисленных недостатков за счет использования в качестве чувствительных пленок на аммиак поли-п-ксилиленовых материалов, содержащих частицы свинца.
Такие материалы могут быть получены путем совместной конденсации паров свинца и п-ксилилена в вакууме (10-4 торр) на специально подготовленную подложку из плавленого кварца размером 5х5 мм с напыленными платиновыми контактными площадками охлаждаемую жидким азотом с последующим доведением соконденсата до стабильного состояния термическим отогревом до комнатных температур. П-ксилилен получают пиролизом циклофана (ди-цикло-п-ксилилена) при температурах 490-700oC. Свинец испаряют резистивно при температурах 560-800oC. Время соконденсации варьируют от 1 до 40 мин. При нагревании до комнатных температур одновременно происходят два процесса: полимеризация п-ксилилена с образованием поли-п-ксилилена (схема 1) и агрегация атомов и малых кластеров свинца. В результате получают пленочные материалы включающие наноразмерные свинцовые частицы, содержащие свинца составляет 0.01-0.8 мкг/мм2.
Нами впервые установлено, что полученные материалы могут работать в качестве чувствительных пленок на аммиак в газовой фазе при комнатных температурах. Поли-п-ксилиленовые пленки, содержащие частицы свинца, обладают сопротивлением (R, ом) 1014-1016 ом на воздухе. В присутствии аммиака в газовой фазе при комнатных температурах сопротивление образцов в течение нескольких секунд обратимо изменяется на 6-8 порядков.
Пример 1. П-ксилилен пиролизовали при 525oC. Свинец испаряли при 800oC. Время конденсации 3 мин. Конденсацию осуществляли в вакууме на охлажденную жидким азотом кварцевую подложку с платиновыми контактами. После отогрева до комнатных температур подложку с нанесенным Pb-поли-п-ксилиленовым материалом помещали в проточную ячейку и проводили измерения электрического сопротивления на постоянном токе. Полученный таким образом материал (содержащие свинца 1.6 мкг/мм2) обладает сопротивлением 1016 ом в чистом воздухе при комнатной температуре. В присутствии аммиака (30 мкг/л) сопротивление исследуемого образца в течение нескольких секунд изменяется до 2•108 ом. Влияние концентрации аммиака в газовой фазе на величину отклика (R) представлена в табл. 1.
Время установления стационарного значения сопротивления для концентрации 0.1 об. (600 мкг/л) и температуры 23oC составляет несколько секунд (см. табл. 2).
Изменение сопротивления образца полностью обратимо. Время установления первоначального значения сопротивления также составляет несколько секунд.
Температурная зависимость сигнала для концентрации аммиака 10-1 об. (600 мкг/л) (см. табл. 3).
Пример 2. П-ксилилен пиролизовали при 520oC. Свинец испаряли при 560oC. Время конденсации 3 мин.
Полученный Pb-поли-п-ксилиленовый материал (с содержанием свинца 0.05 мкг/мм2, средний размер частиц не превышает 25 нм) обладает сопротивлением 1016 ом в чистом воздухе. В присутствии аммиака в газовой фазе (30 мкг/л) сопротивление изменяется до 6•109 ом. Влияние концентрации аммиака в газовой фазе на сопротивление данного образца представлено в табл. 4.
Таким образом, поли-п-ксилиленовые материалы с включенными частицами свинца, предложенные нами в качестве чувствительных пленок на аммиак в газовой фазе, обладают рядом преимуществ по сравнению с прототипом [2] Основные достоинства разработанных материалов: высокая чувствительность, секундные времена изменения отклика и работа при комнатных температурах Работа при комнатных температурах положительно влияет на долговечность чувствительных пленок, упрощает процедуру измерений, снижает энергозатраты, определяет искробезопасное исполнение чувствительных пленок на основе Pb-поли-п-ксилиленовых материалов. Большие концентрации аммиака (до 600 мкг/л) не отравляют чувствительные пленки.
Литература.
1. Патент РФ N 2017547, кл. B 05 D 1/38 опубл. 15.08.94, Бюл. 15, Загорский В. В. Петрухина М.А. Сергеев Г.Б. Розенбург В.И. Харитонов В.Г. Способ получения пленочных материалов, содержащих кластеры металлов.
2. Mitsuhashi H. Suzuki K. Nakane M. "Ammonia-selective gas sensor using tin oxide semiconductors", Chem. Express. 1992, V. 7, N 5. P. 409-417.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПЛЕНОЧНЫХ МАТЕРИАЛОВ, СОДЕРЖАЩИХ КЛАСТЕРЫ МЕТАЛЛОВ | 1992 |
|
RU2017547C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ, СОДЕРЖАЩИХ ЧАСТИЦЫ МЕТАЛЛОВ И ИХ ОКСИДОВ НАНОМЕТРОВОГО РАЗМЕРА | 1996 |
|
RU2106204C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ГРАДИЕНТНОГО ТОНКОПЛЕНОЧНОГО МАТЕРИАЛА И МАТЕРИАЛ НА ОСНОВЕ ПОЛИПАРАКСИЛИЛЕНА | 2010 |
|
RU2461576C2 |
СПОСОБ ПОЛУЧЕНИЯ РЕНТГЕНОАМОРФНОЙ МОДИФИКАЦИИ КАРВЕДИЛОЛА | 2006 |
|
RU2366653C2 |
ПОЛУПРОВОДНИКОВЫЙ ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ СЕЛЕКТИВНОГО ДЕТЕКТОРА ОКСИДОВ АЗОТА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2006 |
|
RU2305830C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЛЁНКИ КРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ КОМПЛЕКСНЫХ ГАЛОГЕНИДОВ С ПЕРОВСКИТОПОДОБНОЙ СТРУКТУРОЙ | 2020 |
|
RU2779016C2 |
ГАЗОЧУВСТВИТЕЛЬНЫЙ СЛОЙ ДЛЯ ОПРЕДЕЛЕНИЯ ФОРМАЛЬДЕГИДА В ВОЗДУХЕ, СЕНСОР С ГАЗОЧУВСТВИТЕЛЬНЫМ СЛОЕМ И ДЕТЕКТОР ДЛЯ ОПРЕДЕЛЕНИЯ ФОРМАЛЬДЕГИДА | 2019 |
|
RU2723161C1 |
Фотовольтаическое устройство на основе стабилизированных полупроводниковых пленок йодоплюмбата цезия | 2022 |
|
RU2826020C2 |
Способ изготовления составной ветви термоэлемента, работающей в диапазоне температур от комнатной до 900o C | 2015 |
|
RU2607299C1 |
Органические галогениды и комплексные галогениды металлов, способы их получения, фотовольтаическое устройство с фотоактивным слоем на основе комплексных галогенидов металлов и способ изготовления этого устройства | 2021 |
|
RU2798007C2 |
Сущность изобретения: применение поли-п-ксилилена, содержащего свинец в количестве 0,01-8,0 мкг/мм2, в качестве чувствительного слоя в датчике на аммиак. 4 табл.
Применение поли-п-ксилилена, содержащего свинец в количестве 0,01 8,0 мкг/мм2, в качестве чувствительного слоя в датчике на аммиак.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
RU, патент, 2017547, кл.B 05D 1/38, 1994 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Mitsuhashi N., Suzuri K., Narone M., Chem | |||
Express, 1992, v.7, N 5, p.409-417. |
Авторы
Даты
1997-11-27—Публикация
1995-04-17—Подача