Изобретение относится к электротехнике, в частности к контролю электрических параметров аккумуляторных источников питания как отдельных аккумуляторов, так и батарей.
Знание электрических параметров аккумуляторных источников питания (АИП) позволяет производить диагностирование технического состояния на различных стадиях эксплуатации, а также принимать решение о их восстановлении или списании.
Известны различные способы определения параметров АИП, в частности способ определения составляющих полного внутреннего сопротивления аккумуляторной батареи путем сравнения напряжения на ней и выходе аналоговой моделирующей установки при прохождении импульсов зарядного и разрядного токов через батарею и включенный последовательно с ней безиндуктивный резистор, напряжение с которого подается на вход аналоговой моделирующей установки [1] При достижении совпадения изменений напряжений, контролируемого ходом лучей двухлучевого осциллографа, подключенного к клеммам батареи и выходу аналоговой моделирующей установки, определяют передаточную функцию полученной модели по установленным значениям параметров моделирующей установки, а также составляющие полного внутреннего сопротивления аккумуляторной батареи из условия равенства передаточных функций полученной модели и математического выражения полного внутреннего сопротивления батареи в операторной форме.
Недостатками этого способа являются низкая точность из-за субъективности оценки экспериментатором совпадения переходных характеристик модели и батареи, а также высокая трудоемкость определения параметров АИП.
Наиболее близким по технической сущности и достигаемому результату является способ определения электрических параметров АИП. (омическое сопротивление rо, сопротивление поляризации rп, емкость поляризации Cп), основанный на измерении ЭДС аккумулятора (напряжение разомкнутой цепи), а также фактических значений падения напряжения на аккумуляторе и разрядного тока при его разряде на разрядное сопротивление (безиндуктивное) в фиксированные моменты времени O, t1 и t2 2t1, соответствующие начальным участкам экспериментальных кривых переходных процессов в пределах 0,3 0,5 с падения напряжения на аккумуляторе и разрядного тока. Названные величины измеряются методом непосредственной оценки по диаграммам переходных процессов, записанных быстродействующим самопишущим прибором без компенсации ЭДС. В данном способе использована известная электрическая схема замещения аккумулятора, для которой электрические параметры АИП находятся путем решения системы уравнений, описывающих электрические процессы в этой схеме.
Известный способ имеет низкую точность определения электрических параметров АИП, обусловленную использованием метода непосредственной оценки необходимых значений падений напряжений и токов по диаграммам переходных процессов, записанных без компенсации ЭДС аккумулятора. Все это в конечном итоге приводит к увеличению цены деления записывающего прибора, к увеличению абсолютной погрешности измерения. Кроме того, этот способ трудоемок, т.к. требует обработки диаграмм двух переходных процессов, падения напряжения на АИП и его разрядного тока на разрядное сопротивление, записанных быстродействующим самопишущим прибором.
Задачей изобретения является повышение точности определения электрических параметров АИП и снижение трудоемкости.
Сущность изобретения состоит в том, что для определения электрических параметров АИП используют только экспериментальную кривую переходного процесса падения напряжения на аккумуляторе при полном компенсации его ЭДС и разряде на известное образцовое разрядное сопротивление. При этом компенсация ЭДС, управление разрядом, измерение падений напряжений на аккумуляторе и фиксированные моменты времени O, t1 и t2 2t1, соответствующие начальному участку экспериментальной кривой переходного процесса, расчет электрических параметров АИП осуществляется с применением микроЭВМ и программного обеспечения, разработанного на базе предложенного математического аппарата.
На фиг.1 представлена структурная схема устройства для реализации способа; на фиг.2 приведена характерная экспериментальная кривая переходного процесса падения напряжения на АИП при полной компенсации его ЭДС и разряде на разрядное сопротивление.
Устройство содержит аккумуляторный источник 1 питания, образцовое разрядное сопротивление 2, электронный ключ 3, регулируемый источник 4 полного напряжения, дифференциальный измерительный усилитель 5 и микроЭВМ 6 с устройством ввода-вывода.
Предлагаемый способ определения электрических параметров аккумуляторных источников питания реализуется следующим образом.
Перед подключением аккумуляторного источника 1 питания к образцовому разрядному сопротивлению 2 производят компенсацию его ЭДС регулируемым источником опорного напряжения 4. Такой регулятор может быть реализован, например, принципиальной схемой, приведенной в [3] с.98, рис.239. В качестве образцового разрядного резистора 2 может быть применен, например, проволочный резистор типа С5-16 [4] с.176. Контроль компенсации осуществляют дифференциальным усилителем 5, выполняющим функцию нуль-индикатора. Дифференциальный усилитель 5 может быть реализован, например, принципиальной схемой, приведенной в [5] с.12, рис.7. Управление источником 4 осуществляет микроЭВМ 6, например компьютер. При достижении компенсации ЭДС микроЭВМ 6 запоминает значение ЭДС аккумулятора и выдает сигнал на включение электронного ключа 3, который подключает к аккумулятору 1 образцовое разрядное сопротивление 2. Электронный ключ 3 может быть реализован, например, принципиальной схемой, приведенной в [6] с.78, рис.46. После подключения сопротивления 2 к аккумулятору 1 дифференциальный усилитель 5 выдает сигнал, пропорциональный падению напряжения на аккумуляторе 1, который поступает в микроЭВМ. Последняя в фиксированные моменты времени O, t1 и t2 2t1 определяет значения падений напряжений на аккумуляторе ΔUo, ΔU1 и ΔU2 (фиг.2) и на основе этой информации производит расчет электрических параметров АИП по формулам, полученным с использованием электрической схемы его замещения, например, приведенной в прототипе
где rо омическое сопротивление АИП;
rно значение образцового разрядного сопротивления;
Eо ЭДС АИП;
ΔUo падение напряжений на АИП в момент времени t Oс;
где rп сопротивление поляризации электродов АИП;
установившееся значение отклонения экспоненты от ΔUo
ΔU1 падение напряжения на АИП в момент времени t1 (фиг.2);
l основание натурального логарифма.
где ΔU2 падение напряжения на АИП в момент времени t2 2t1 (фиг.2).
В отличие от прототипа заявленный способ базируется на использовании только переходного процесса падения напряжения на АИП и при его разряде на известное разрядное сопротивление, причем процесса, получаемого при полной компенсации ЭДС аккумулятора. Кроме того, в заявленном способе отсутствует необходимость в быстродействующем самопишущем приборе и в ручной обработке записанных диаграмм. Вследствие изложенного повышается точность определения электрических параметров АИП, уменьшается время, затрачиваемое на проведение эксперимента и обработку результатов, появляется возможность использования этого способа в автоматизированных системах диагностирования аккумуляторных батарей.
Достоверность предлагаемого способа подтверждена данными исследований герметичных аккумуляторов типа НКГК-11Д.
Сущность изобретения: в фиксированные моменты времени O, t1 и t2 = 2t1, соответствующие начальному участку кривой переходного процесса, измеряют падения напряжения на источнике при полной компенсации его ЭДС и его разряде на известное образцовое разрядное сопротивление. Измеренные напряжения подают в микроЭВМ, которая в соответствии с программным обеспечением разработанного на базе предложенного математического аппарата рассчитывает значения омического сопротивления, сопротивления поляризации электродов и емкости поляризации аккумуляторного источника питания. 2 ил.
Способ определения электрических параметров аккумуляторных источников питания, основанный на измерении падения напряжения на аккумуляторе при его разряде на разрядное сопротивление и фиксированные моменты времени 0, t1 и t2 2t1, соответствующие начальному участку, в пределах 0,3 0,5 с, экспериментальной кривой переходного процесса, отличающийся тем, что производят компенсацию ЭДС (напряжение разомкнутой цепи) аккумуляторного источника питания, осуществляют разряд на известное образцовое разрядное сопротивление, измеряют в фиксированные моменты времени падение напряжения на аккумуляторе и на основе измеренных напряжений определяют по формулам
где rо омическое сопротивление АИП;
rн о значение образцового разрядного сопротивления;
Ео ЭДС АИП;
ΔUo - падение напряжения на АИП в момент времени 0 с;
где rn сопротивление поляризации электродов АИП;
установившееся значение отклонения экспоненты от ΔUo;
ΔU1 - падение напряжения на АИП в момент времени t1;
е основание натурального логарифма;
где Cn емкость поляризации АИП;
ΔU2 - падение напряжения на АИП в момент времени t2 2t1.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
SU, авторское свидетельство, 658630, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Пугачев Е.В., Вавиловский В.И | |||
Динамические характеристики тяговой аккумуляторной батареи как объекта автоматического управления | |||
- Электричество, N 11, 1984, с | |||
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором | 1915 |
|
SU59A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Федоров Б.Г., Телец В.А | |||
Микросхемы ЦАП и АЦП | |||
Функционирование, параметры, применение | |||
- М.: Энергоатомиздат, 1990, с | |||
Поливное приспособление для паровозов | 1922 |
|
SU390A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Резисторы: Справочник/ Под редакцией И.И.Четвертилова | |||
- М.: Энергоиздат, 1981, с | |||
Судно | 1918 |
|
SU352A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
Микропроцессорные средства и системы, N 4, 1988, с | |||
Термосно-паровая кухня | 1921 |
|
SU72A1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
Сергеев Б.С | |||
Схемотехника функциональных узлов источников вторичного электропитания | |||
/ Справочник | |||
- М.: Радио и связь, 1992, с | |||
Фотореле для аппарата, служащего для передачи на расстояние изображений | 1920 |
|
SU224A1 |
Авторы
Даты
1998-01-10—Публикация
1996-02-01—Подача