КОМПЛЕКС ВКЛЮЧЕНИЯ 3-МОРФОЛИНОСИДНОНИМИНА ИЛИ ЕГО СОЛИ, ИЛИ ЕГО ТАУТОМЕРНОГО ИЗОМЕРА С ЦИКЛОДЕКСТРИНОМ ИЛИ ПРОИЗВОДНЫМ ЦИКЛОДЕКСТРИНА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СОДЕРЖАЩАЯ ЕГО ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СПОСОБ ПОЛУЧЕНИЯ ФАРМАЦЕВТИЧЕСКОЙ КОМПОЗИЦИИ И СПОСОБ ЛЕЧЕНИЯ СТЕНОКАРДИИ И ИШЕМИЧЕСКОЙ БОЛЕЗНИ ЧЕЛОВЕКА Российский патент 1998 года по МПК C08B37/06 A61K31/535 A61K47/48 

Описание патента на изобретение RU2107695C1

Изобретение относится к комплексам включения 3-морфолино сиднонимина (SIN-1) или его соли, или его таутомерной формы "А" с открытым кольцом (SIN-1A: N-нитро-N-морфолино-аминоацетонитрил) с производным циклодекстрина, к способу их получения, а также к фармацевтическим композициям, содержащим их в качестве активного компонента.

Форма с открытым кольцом "А" играет важную роль, ее образование преобладает при освобождении радикала NO (окись азота).

Молзидомин (N-этоксикарбонил-3-морфолино-сиднонимин, SIN-10) является хорошо известным средством против стенокардии. В терапии он широко применяется для лечения и предупреждения ангиоспазмов в случае сердечной недостаточности, в состоянии инфаркта сердца. Терапевтический эффект Молзидомина можно приписать его первому активному метаболиту 3-морфолин-синдонимина, который генерируется в основном в печени в результате ферментативного гидролиза и последующего действия фермента декарбоксилазы. Таким образом, SIN-1 обладает терапевтическими преимуществами по сравнению также с Молзидомином, т.е. его эффект наступает быстрее и является более определенным.

Его недостатком является применение только в виде внутривенных инъекций.

Производные сиднонимина исключительно чувствительны к воздействию света. При облучении искусственным или естественным светом, даже в течение короткого промежутка времени они быстро разлагаются. В процессе фотолиза образуются фармакологически неактивные, но безвредные продукты разложения, в частности, морфолин, аммиак, этиловый спирт, двуокись углерода. Целью некоторых патентов является фотостабилизация производных сиднонимина путем введения различных добавок. (ЕПВ N 206219 и к патенту GFR N 3.346.638).

Отрицательного эффекта фоточувствительности можно избежать при хранении в соответствующих условиях сухого вещества, а также раствора (в плотно закрытой темной колбе, обернутой черной бумагой).

Производные сиднонимина чувствительны к экстремальным значениям pH и быстро разлагаются. Конечным продуктом химического и метаболического разложения Молзидомина является SIN-1C (цианометиленаминоморфолин), неактивный метаболит. При использовании SIN-1 в качестве медикамента возникают проблемы химической стабильности. Вещество быстро разлагается в нейтральном водном растворе, чувствительно к значению pH и стабильно только в сильнокислой среде (pH 1-2). При pH выше 2 оно быстро разлагается до неактивного метаболита SIN-1C, что связано с потерей терапевтической активности. Трансформация SIN 1 → SIN-1C является результатом катализируемого основаниями каталитического разложения. Процесс сильно зависит от величины pH, т.е. для того, чтобы степень разложения достигла 10% (SIN-1C), необходимо 53 с при pH 8, 15 ч при pH 6, 67 дней при pH 4 и 13 лет при pH 1-2 (Chem. Pharm. Bull. 19/6, 1079, 1971).

SIN-1 также разлагается в разбавленном водном растворе при хранении в рассеянном свете уже через 1-3 дня. Разложение можно проследить непосредственно по УФ-спектру. Максимум поглощения сдвигается постепенно с 291±1 до 278±1 нм, тогда как величина поглощения возрастает непрерывно, что согласуется с литературными данными: величина λmax для SIN-1 составляет 291±1 нм, удельный коэффициент поглощения А1% = 520, тогда как для SIN-1C λmax 278±1 нм, его молярный коэффициент поглощения ε = 17000A1%1см

= 1220.

При пероральном введении SIN-1 неэффективен, при pH 1-2 находится в сильно ионизованном состоянии, которое предпочтительно в смысле химической стабильности, но с другой стороны не благоприятствует ресорбции из желудочно-кишечного тракта. В свете изложенныз фактов SIN-1 при движении из кишечника при более высоких значениях pH быстро превращается в неактивный метаболит SIN-1C. Этому превращению благоприятствуют низкие дозы SIN-1, поскольку при низких концентрациях (порядка μ/мл гидролитическое разложение более явно выражено).

SIN-1 поступает на рынок в виде гидрохлорида для внутривенного ведения в виде ампул с лиофилизиронным порошком, содержащих по 2 мг активного ингредиента и 40 мг сорьита. Содержимое ампулы нужно перед использованием растворить в 1 мл дистиллированной воды.

Известно, что образование комплекса с декстрином подходящим способом стабилизации различных агентов по отношению к действию тепла, света и к основному или кислотному гидролизу. (Srejtly: Cyclodextrin Technolohy, Kluwer, Dordrecht, 1988, pp. 211-217).

Задачей изобретения является получение такого нового агента, с помощью которого можно затруднить трансформацию SIN 1 → SIN 1C даже в нейтральном водном растворе и, соответственно, при физиологических значениях pH.

Поставленная задача достигается новым комплексом включения 3-морфолино-синдонимина или его соли, или его таутомерного изомера с циклодекстрином или производным циклодекстрина, преимущественно, β или γ циклодекстрином, гидроксипропил- β -циклодекстрином, гептакис-2,6-диметил- β -циклодекстрином, гептакис-2,3,6-три-о-метил- β -циклодекстрином, ионным водорастворимым циклодекстриновым полимером (CDPSI) мол.м. менее 10000.

Было определено, что циклодекстрины сами по себе эффективно стабилизируют разбавленные водные растворы, полученные из композиций для инъекций, содержащих SIN-1.

Новый комплекс включения получают взаимодействием 3-морфолино-синдонимина или его соли, или его таутомерного изомера с циклодекстрином или производным циклодекстрина, преимущественно β -циклодекстрином, гидроксипропил- β -циклодекстрином, гептаким-2,6-диметил- β - циклодекстрином, гептакис-2,3-6-три-о-метил- β -циклодекстрином, соответственно, в водной среде с последующим выделением комплекса из раствора путем удаления воды.

Задачей изобретения также является создание новой стабильной фармацевтической композиции на основе синдонимина для стабильного применения в виде инъекций, перорально или местно.

Поставленная задача достигается фармацевтической композицией, содержащей комплекс включения 3-морфолино-синдонимина или его соли, или его таутомерного изомера с циклодекстрином или производным циклодекстрина, преимущественно β -циклодекстрином, гироксипропил- β - циклодекстрином, гептокис-2,3,6-три-о-метил- β -циклодекстрином, ионным водорастворимым циклодекстриновым полимером (CDPSI) мол.м. менее 10000, в качестве активного компонента. Данная композиция получается путем смешивания комплекса включения с фармацевтически приемлемыми целевыми добавками.

Новая фармацевтическая композиция эффективна при лечении стенокардии и ишемической болезни человека, путем введения в организм комплекса включения в дозе 6-800 мг в день.

Наличие взаимодействия между SIN-1 и циклодекстринами доказано с помощью следующей последовательности испытаний.

Из композиции для инъекций, содержащих SIN--1, готовят водный раствор концентрации около 10 μг г/мл и растворяют в полученных растворах при перемешивании 20-40 мг циклодекстрина или производного циклодекстрина.

Растворы хранят при комнатной температуре (20-200oC) при рассеянном освещении и через определенные промежутки времени (ежедневно) снимают УФ-спектры растворов в интервале λ 220-350 нм. Для контроля используют, соответственно только водный раствор, 0,05 н. раствор хлористоводородной кислоты. Проверяют pH раствора циклодекстринов с целью определить не изменяют ли существенно циклодекстрин и, соответственно его производное значения pH воды. Значение pH используемых растворов циклодекстринов большей концентрации отличаются от pH дистиллированной воды только в пределах ±0,2. Сдвиг спектра УФ подавляет добавление CDPSI, растворимого ионного полимера β -циклодекстрина (средняя мол.м. 3500, содержание β -CD 54%, содержание COO : 4,2%) (патент Венгрии N 191.101). Сдвиг спектра не выявляется даже после хранения в течение 2 недель, тогда как сохранявшиеся в аналогичных условиях водные растворы превращались практически полностью в SIN 1C за 2-3 дня.

Явно выражен также замедляющий, затрудняющий разложение эффект Димеба (DIMEB = 2,6-ди-о-метил- β -циклодекстрин). В присутствии 20 мг/мл Димеба на спектре раствора после хранения и продолжение 6 дней выявлен сдвиг всего лишь около 1 нм. Исследован также стабилизирующий эффект Тримеба (TRIMEB = 2,3,6-три-о-метил- β -циклодекстрин), γ -CD, β -CD и гидроксипропил- β - CD. Ряд эффективности, выведенный из величин сдвигов УФ-спектра, выглядит следующим образом:
CDPSI >> Димеб > Тримеб > β -CO ≥ HP β CD.

Из оценки влияния, которое указывают различные циклодекстсрины на гидролитическое разложение SIN-1 и, в частности, CDPSI можно сделать вывод о наличии комплексного взаимодействия.

В описанной серии испытаний циклодекстрины и, соответственно, их производные использовались в очень большом избытке (10 μг г/мл SIN-1 против≈ 20 мг/мл циклодекстрина).

Последовательность испытаний повторяют в том же порядке, но CDPSI вводят только в 10-кратном, 20-кратном избытке, что соответствует массовому соотношению SIN-1 : CDPSI в комплексе, содержащем, соответственно, 10, 5% активного ингредиента. Низкая терапевтическая доза SIN-1 позволяет использовать комплекс, содержащий менее 5% активного ингредиента, что соответствует молярному соотношению SIN-1 : CDPSI = 1:2. В таком диапазоне концентраций стехиометрическое измерение не дает описательной картины, по этой причине степень разложения определяется тонкослойной хроматографией следующим образом.

Порцию раствора 10 μл л добавляют по каплям на силикагелевую пластинку Kieselgel 60F254 (10x10 см, фирма Merck). Подвижная смесь, циклогексан : этилацетат в отношении 1:1. Ванну со смесью растворителей выдерживают в течение 30 мин для насыщения. На пластинку добавляют также по каплям эталонный раствор. После нанесения пятна пластинку высушивают в токе холодного воздуха, защищая от света, и оставляют до подъема подвижной фазы на высоту 15 см. В это время ванна с растворителя находится в темном месте. После испарения растворителя пластинку визуально исследуют в УФ-свете с длиной волны 254 нм. SIN-1 представляется при Rf 0,05, а SIN 1C - при Rf 0,36. В каждом случае обнаружено, что в растворах, содержащих CDPSI, интенсивность пятна SIN 1C визуально меньше, чем в водных растворах.

Поскольку превращение SIN-1 в неактивный метаболит в значительной степени зависит от величины pH, измерения проводятся в фосфатных буферах с pH 6,4, 7,0 и 7,6, согласно фармокопее. В каждом случае сравнивают буфер и буферные растворы, содержащие 20 мг/мл CDPSI, все они подвергаются УФ-спектроскопии после соответствующего разбавления водно-спиртовой смесью, исследуют интенсивность продукта разложения SIN-1 с помощью тонкослойной хроматографии.

Результаты спектрофотометрических измерений сведены в табл. 1.

Уменьшение максимального значения длины волны примерно на 13 нм (с 291 по 278 нм) соответствует полному разложению SIN до SIN 1C.

В буфере с pH 6,4 в присутствии CDPSI даже через 6 дней Δλ = 7 нм в противоположность контрольной величине Δλ = 12 нм. Воспроизводимость УФ-максимума в данных условиях находится в пределах ± 0,5 нм, и таким образом разницу можно считать значительной. Через один день хранения разницу Δλ все еще можно было измерить, напротив при pH 7,6 стабилизирующий эффект CDPSI едва ли превалирует более длительный период времени.

В подвергавшихся тестам растворах молярное отношение SIN 1 : CDPSI составляет около 1 : 2, что является необходимым минимумом для комплексообразования в растворе. Стабилизирующий эффект в растворе 10-кратного избытка (10 мг/мл) соответствующего молярному отношению 1:1 -CDPSI едва имеет место. Степень разложения можно также проследить с помощью тонкослойной хроматографии. Интенсивность пятна SIN 1C, выявленного при Rf 0,36 в буфере с pH 6,4, отличается заметно даже после хранения в продолжение недели, в буфере с pH 7,0 и 7,6 после хранения в течение 1 дня наблюдается ощутимое различие в интенсивности пятна SIN 1 при Rf 0,04. В буфере с pH 7,0 все еще заметен неизменный SIN 1, тогда как при pH 7,6 он практически не определялся.

Равновесие диссоциации комплекса в растворе можно сместить за счет добавления избытка циклодекстрина. При введении предельно большого избытка (1000, 2000-кратного) на спектре композиций для инъекций выявлен сдвиг всего Δλ + 1 нм, - в дистиллированной воде после хранения в течение 1 недели, в то время как контрольный раствор практически разлагается.

Количественные изменения степени разложения проводятся также методом ЖХВР.

Условия разделения SIN 1 - SIN 1C методом ЖХВР
Оборудование: модуль подачи растворителя Bechman 114 М, детектор переменной длины волны 165, интегратор Hewlett-Packard 3396A.

Колонка: колонка для аналитических целей Ultrasphere ODS 4,6 х 150 нм, 5 μ
Элюент: 0,05 М ацетат натрия, мл - 700
Ацетонитрил, мл - 300
Тетрагидрофуран, мл - 2
Скорость течения, мл/мин - 1
Давление, бар - 120
Длина волны измерения, нм - 278, 290
Объем образца, л - 20
Чувствительность, А - 0,1
Скорость движения бумаги, см/мин - 0,5
Время удерживания, мин - SIN1: 2,9, SIN 1C: 4,2
Результаты.

1. Растворы SIN 1 концентрации 0,5 мг/мл в фосфатном буфере хранили, защищая от света, при комнатной температуре. Для образования комплекса вводят 50 мг/мл (100-кратное количество) CDPSI. После хранения в течение 5 недель снимают хроматограммы ЖХВР.

Анализ хроматограмм приведен в табл. 2.

CDPSI, вводимый в 100-кратном массовом избытке (в молярном соотношении около 10: 1) в значительной степени затрудняет разложение SIN 1. Полученный результат находится в соответствии с результатами тонкослойной хроматографии.

2. Испытания проводятся также в фосфатном буфере с pH 7 с аналогичными концентрациями (0,5 мг/мл SIN 1 и 50 мг/мл CDPSI).

Исследуют хроматограммы, полученные после хранения в течение 4 дней.

Анализ хроматограмм приведен в табл. 3.

Можно считать доказанным, что в пределах применяемых концентраций CDPSI затрудняет даже при pH 7 превращение SIN 1 в SIN 1C, которое представляет собой неактивный метаболит.

Далее мы провели испытания на стабильность инъекции SIN 1 в разбавленном водном растворе.

Из ампулы, в которой содержится лиофилизированный порошок SIN 1, был приготовлен водный раствор концентрации 50 г/мл, после чего было добавлено 20 мг/мл CDPSI. Растворы хранились при комнатной температуре и время от времени в них определялось количество продукта разложения SIN 1C.

Анализируют хроматограммы, снятые через 1, 4, 11 дней (см. табл. 4)
Причем, комплексы SIN 1 с циклодекстринами, в частности с CDPSI, комплекс после приготовления содержит значительные количества промежуточного продукта SIN 1A. Процесс превращения SIN 1 → SIN 1Α → SΙΝ 1C в присутствии циклодекстринов исследовали также в 0,02 М ацетатном буфере при pH 5,5. Удивительно, но наиболее явно выраженным оказался эффект β -CD, более чем в 7 раз большее количество SIN 1A было обнаружено в присутствии β -CD, чем в контроле. (SIN 1A определяли с помощью ЖХВР).

Исследуя биологический эффект композиций согласно изобретению, обнаруживают, что в то время как SIN 1, вводимый перорально в дозе 1 мг/мл, не обладает активностью, (кардиозащитная активность на крысах 11%) при пероральном введении, помимо этого активного ингредиента, SIN 1 - CDPSI кардиозащитная активность составляет 42,2%.

Хорошую биологическую активность комплекса SIN 1 - CDPSI в испытаниях на кардиозащитную активность после перорального введения можно приписать присутствию в твердом комплексе SIN 1A. Образование "A"-формы, которая играет ключевую роль в возникновении биологического эффекта, невозможно при pH среды кишечника, она может возникнуть m-vitro из соединения SIN 1A в результате выдержки при щелочных pH. При растворении CDPSI-комплекса в дистиллированной воде в полученном растворе можно определить значительные количества SIN 1A.

По-видимому, превращение SIN 1 - SIN 1A промотируется циклодекстринами, и в то же время очень неустойчивый, чувствительный к кислороду SIN 1A стабилизируется комплексообразованием, которое приводит к замедлению превращения SIN 1Α → SIN 1C . Более мягкое начало и большая продолжительность действия обусловлена замедленным выделением окиси азота из связанного в комплекс SIN 1.

В табл. 5 приводится содержание комплексов SIN 1 с различными декстринами, полученных согласно примеру 2, которое измеряется непосредственно после получения с помощью ЖХВР. Как стандарт используют физическую смесь SIN 1 того же состава, приготовленную таким же способом с лактозой.

Результаты и выводы.

Релаксирующие эффекты комплексов SIN 1-циклодекстрин и нормального SIN 1 исследуют при концентрации 1 или 2 М.

Все четыре комплекса релаксируют длительное сокращение деполяризованных калиевых скоплений с максимальным эффектом 43-53%. SIN 1 (1 μ М) оказывается несколько более эффективным - релаксация 58%.

Максимальная релаксация зарегистрирована для комплексов SIN 1 в интервале 23 - 32 мин после употребления, тогда как T/max для SIN 1 наступает через 18 мин. Эта разница статистически значительна. Продолжительность действия, измеренная как T/2, оказывается больше в случае комплексов с циклодекстрином (62 - 88 мин), чем для SIN 1 (47 мин). Эта разница оказывается также статистически заметной. Таким образом, комплексы SIN 1 - циклодекстрин демонстрируют более мягкое начало и большую продолжительность действия, чем нормальный SIN 1.

В связи с тем, что, как предполагают, релаксирующий эффект SIN 1 обусловлен выделением окиси азота в результате процесса окислительного разложения можно сделать вывод о замедлении процесса разложения в результате образования комплексов SIN 1 с циклодекстринами. Таким образом, более мягкое начало и большая продолжительность действия обусловлены, по-видимому, замедленным выделением окиси азота из комплексов SIN 1-циклодекстрин.

В качестве производного циклодекстрина комплексы включения по изобретению содержат преимущественно ионный водорастворимый полимер циклодекстрина (CDPSI) (мол. м. < 10000), гептакис-2,6-диметил- β -циклодекстрин (Димеб), гептакис-2,3,6-три-O-метил- β -циклодекстрин (Тримеб) и β - или γ -циклодекстрин.

Для получения твердого комплекса включения можно использовать также гидроксипропил- β -циклодекстрин.

Комплексы включения по изобретению получают по реакции взаимодействия 3-морфолино-сиднонимина или его солей в растворителе с производным циклодекстрина и при желании комплекс выделяют из раствора путем удаления воды либо очень энергичным размалыванием смеси 3-морфолино-сиднонимина или его солей и производного циклодекстрина.

Выделять комплекс из раствора можно путем лиофилизации, сушкой с распылением, выпариванием под вакуумом при низких температурах и вакуумной сушкой.

Растворяют SIN 1 с 1-40 ммолями CDPSI или Димеба в 1-500 мл дистиллированной воды, что рассчитывается на 1 ммоль активного ингредиента, после чего осуществляют обезвоживание, как указывалось выше. Молярное отношение полимера CDPSI вычисляется на β - CD. Таким образом, при введении полимера с содержанием β -CD 50% и средней мол. м. 3500 состав комплекса с соотношением 1:1 соответствует примерно 8%, а молярное отношение 2:1 - примерно 4,5%. Взаимодействие комплекса в растворе иллюстрируется тестом на проникновение через мембрану.

Используют целлофановую мембрану visking - типа (средний диаметр под 24 . В донорную ячейку помещают водный раствор SIN 1 концентрации 1 мг/мл, тогда как в приемном отделении аппарата с мембраной находится дистиллированная вода. Растворы перемешивают магнитной мешалкой и выдерживают при 37±1oC. Через соответствующие промежутки времени отбирают пробы раствора и измеряют концентрацию SIN 1, проникшего из донорной ячейки, с помощью УФ-спектроскопии.

Испытания повторяют в присутствии различных циклодекстринов при различных концентрациях в донорном отделении элемента.

Промежутки времени, необходимые для диффузии 50% SIN 1 в присутствии CDPSI при различных концентрациях, перечислены в табл. 6
Комплексы включения, полученные согласно изобретению, могут использоваться в производстве фармацевтических композиций, соответственно для стабильного применение в виде инъекций, перорально или местно.

Дозы комплексов включения согласно изобретению могут меняться в зависимости от возраста, веса тела и состояния субъекта, способа применения, количества приемов и т.п., но колеблются от 6 до 600 мг в день, предпочтительно составляют 10-400 мг в день.

Эффект замедленного выделения преобладает, в частности в случае использования фармацевтической композиции в виде таблеток, предназначенных для приема один раз в день, микрокапсул и мазей, очень подходящих, соответственно, для введения через кожу. Фармацевтические композиции согласно изобретению готовят обычным способом. Используют адъюванты и носители, применяемые обычно для изготовления фармацевтических препаратов.

Подробности изобретения иллюстрируют приведенные ниже примеры, которыми не ограничивается изобретение.

Примеры. 1 Получение комплекса SIN 1-CDPSI в результате лиофилизации.

Растворяют в 200 мл дистиллированной воды 15 г (6,6 ммолей) полимера CDPSI, после чего к раствору добавляют 1,1 г (5,3 ммоля) SIN1-HCL. Материалы растворяются почти мгновенно, получается чистый прозрачный раствор, который немедленно замораживают и удаляют воду путем лиофилизации, следя, чтобы по ходу всех процессов вещество подвергалось минимальному по возможности воздействию света.

Рекомендуется, следовательно, заворачивать перегонный куб в черную бумагу. Полученный продукт представляет собой очень светлый рыхлый порошок с содержанием активного ингредиента по данным спектрофотометрии: 6,5±0,5%, что соответствует молярному отношению около 1:1.

Тест, доказывающий факт комплексообразования: термогравиметрия (ТС), дифференциальная сканирующая калориметрия (ДСК) и термический анализ (ТА) показали наличие характерных различий между SIN 1 в составе физических смесей SIN 1 - CDPSI и в комплексе SIN 1 - CDPSI. При температурах 60 - 110oC из активного агента SIN 1 удаляется около 8% неорганического вещества, возможно, что это вода. Разложение при плавлении вещества начинается при 170-180oC, носит взрывной характер и в очень узком температурном интервале из системы удаляет 70% введенного агента.

В интервале температур 220-230oC разложение замедляется, до 350oC можно зарегистрировать 87% потерю веса. Для идентификации активного ингредиента, не входящего в состав комплекса, можно использовать пик на кривой ДСК в интервале температур 190-200oC и пик на кривой подъема температуры при 190oC, вызывающий даже в атмосфере аргона экзотермическое изменение энтальпии.

Кривые термического анализа физической смеси SIN 1 - CDPSI, приготовленных непосредственно перед измерением, можно рассматривать как наложение кривых исходных веществ.

Кривые комплекса демонстрируют значительные расхождения по сравнению с описанными, указанные пики разложения SIN 1 не проявляются, что означает, что действительно SIN 1 образует комплекс включения с CDPSI.

Рентенограммы порошков.

Согласно данным рентгеновской дифрактометрии структура комплекса SIN 1 - CDPSI аморфна. Характерные рефлексы SIN 1 исчезают, известная аморфная структура CDPSI. Степень кристалличности SIN 1, подвергнуто аналогичной обработке, но без CDPSI, хотя и снижается, но переход к полностью аморфной структуре невозможен только в результате лиофилизации. В дифрактограмме комплекса отсутствуют пики отражения θ 2, относящиеся к слабо кристаллизованной форме и характерные для свободного (не связано в комплекс) SIN 1.

2. Получение комплекса SIN 1 - CDPSI путем лиофилизации
Растворяют в 200 мл дистиллированной воды 15 г полимера CDPSI (6,6 ммолей) (содержание β - CD 53%, содержание COO- 4,2%). В полученном растворе растворяют 0,7 г (3,3 ммоля) SIN 1, после чего раствор подвергают обработке согласно методике примера 1.

Содержание активного ингредиента в полученном продукте составляет 4,5±0,2, что соответствует молярному отношению приблизительно 1:2.

3. Получение комплекса SIN 1 - CDPSI с высоким и контролируемым содержанием SIN 1A
Полученный продукт подвергают второй сушке по методике, описанной в примере 2, с целью удаления связанной в комплекс воды. Продукт сушат при 60oC под вакуумом в течение 3 ч (до постоянного веса). Потери при сушке: 4,5±0,2%.

В процессе нагрева содержание SIN 1A возрастает примерно в пять раз, оно увеличивается с 1,08 до 5,1%, причем отношение SIN 1A/SIN 1C также изменяется благоприятно (с 10 до 17). Хранение высушенных комплексов при комнатной температуре в защищенном от света месте в течение более чем 3 мес не приведет практически к изменению содержания SIN 1A и отношения SIN 1A/SIN 1C.

В контрольном (не подвергнутом тепловой обработке) образце при хранении содержание SIN 1A также возрастает с 1,08 до 1,9%, в то же время соотношение SIN 1A/SIN 1C упало (изменяется от 10 до 3).

Получение комплекса SIN 1 - CDPSI с высоким содержанием SIN 1A и контролируемым составом возможно при кратковременной тепловой обработке лиофилизированного комплекса SIN 1 - CDPSI.

4. Получение комплекса SIN 1 - Димеб.

Растворяют в 100 мл дистиллированной воды 14 г Димеба (10,3 ммолей) (содержание влаги 2%). При перемешивании к раствору добавляют 1,03 г (5 ммолей) SIN 1. Полученный прозрачный раствор, защищенный от действия света, подвергают обработке, описанной в примере 1. продукт представляет собой рыхлый белый порошок с содержанием активного ингредиента 6,5±0,2%, что соответствует молярному отношению SIN 1:Димеб=1:2.

5. Получение мази для применения через кожу с содержанием SIN 1 10 мг и мази - 1/2 г
В 20 мл дистиллированной воды растворяют 151 мг комплекса SIN 1 - Димеб, полученного по методике примера 3 (содержание активного ингредиента 6,5%). К раствору, защищенному от действия света, добавляют при интенсивном перемешивании 50 мг KLUCHEL - HF (гидроксипропилцеллюлозы). Таким образом получают вязкий с трудом перемешиваемый раствор, который выдерживают при комнатной температуре в течение одного дня.

В результате образуется прозрачный гель, в 2 г которого содержится 10 мг SIN 1.

6. Таблетки SIN 1 с содержанием активного ингредиента 2 мг на таблетку.

80 мг комплекса SIN 1 - CDPSI, содержание активного ингредиента 2,5%, 40 мг кукурузного крахмала, 128 мг молочного сахара, 2 мг стеарата магния, общий вес таблетки: 250 мг.

Таблетки готовят обычным способом, а именно непосредственным прессованием.

Похожие патенты RU2107695C1

название год авторы номер документа
КОМПЛЕКС ВКЛЮЧЕНИЯ N-ЭТОКСИКАРБОНИЛ-3-МОРФОЛИНСИДНОНИМИНА ИЛИ ЕГО СОЛИ С ЦИКЛОДЕКСТРИНОМ ИЛИ ПРОИЗВОДНЫМ ЦИКЛОДЕКСТРИНА, СПОСОБ ПОЛУЧЕНИЯ ЭТОГО КОМПЛЕКСА ВКЛЮЧЕНИЯ, ФАРМАЦЕВТИЧЕСКИЕ КОМПОЗИЦИИ И СПОСОБ ИХ ПОЛУЧЕНИЯ, СПОСОБ ЛЕЧЕНИЯ 1991
  • Мария Викмон[Hu]
  • Йожеф Сейтли[Hu]
  • Йожеф Гаал[Hu]
  • Иштван Хермец[Hu]
  • Агнеш Хорват[Hu]
  • Каталин Мармароши[Hu]
  • Габор Хорват[Hu]
  • Ирейн Мункачи[Hu]
RU2111216C1
КОМПЛЕКСЫ ВКЛЮЧЕНИЯ N-МОРФОЛИНО-N-НИТРОЗОАМИНОАЦЕТОНИТРИЛА И ЦИКЛОДЕКСТРИНА ИЛИ ПРОИЗВОДНЫХ ЦИКЛОДЕКСТРИНА И СПОСОБ ИХ ПОЛУЧЕНИЯ, ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СПОСОБ ВОЗДЕЙСТВИЯ НА ЖИВЫЕ КЛЕТКИ ОКИСЬЮ АЗОТА 1995
  • Геци Йошеп
  • Викмон Андрашнэ
  • Сейтли Йожеф
  • Сенте Лайош
  • Семан Юлианна
RU2136698C1
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСА СИЛИБИНИНА С ЦИКЛОДЕКСТРИНОМ, КОМПЛЕКС ВКЛЮЧЕНИЯ СИЛИБИНИНА С ЦИКЛОДЕКСТРИНОМ, ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ АНТИГЕПАТОТОКСИЧЕСКОЙ АКТИВНОСТИ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 1991
  • Умберто Валкави[It]
  • Винценцо Монтероссо[It]
  • Роберто Капони[It]
  • Энрико Бозоне[It]
  • Вильфрид Петер Вахтер[De]
  • Йожеф Сейтли[Hu]
RU2108109C1
КЛАТРАТ 7-ИЗОПРОПОКСИИЗОФЛАВОНА И ЦИКЛОДЕКСТРИНОВОГО ПОЛИМЕРА, ПРОЯВЛЯЮЩИЙ АКТИВНОСТЬ ПРОТИВ ОСТЕОПОРОЗА И ОСТЕОМАЛЯЦИИ 1987
  • Штадлер Агнеш[Hu]
  • Сейтли Йожеф[Hu]
  • Вайсфайлер Виктор[Hu]
  • Варган Золтан[Hu]
  • Калои Каталин[Hu]
  • Гергели Вера[Hu]
  • Сютш Тамаш[Hu]
RU2022970C1
ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ПЕРОРАЛЬНОГО ПРИЕМА 1998
  • Фэнара Доменико
  • Берваер Моник
  • Нольф Филипп
  • Врэнк Анри
  • Делирс Мишель
RU2192863C2
КОМПЛЕКСЫ ВКЛЮЧЕНИЯ СОЛЕЙ НИМЕЗУЛИДА С ЦИКЛОДЕКСТРИНАМИ, СПОСОБ ИХ ПОЛУЧЕНИЯ И ФАРМАЦЕВТИЧЕСКИЙ ПРЕПАРАТ, ОБЛАДАЮЩИЙ ПРОТИВОВОСПАЛИТЕЛЬНЫМ И АНАЛГЕЗИРУЮЩИМ ДЕЙСТВИЕМ 1994
  • Жозеф Геци
RU2129564C1
СОЛЬ НИМЕСУЛИДА И L-ЛИЗИНА, РАСТВОРИМАЯ В ВОДЕ, СПОСОБ ЕЕ ПРИГОТОВЛЕНИЯ, КОМПОЗИЦИИ НА ЕЕ ОСНОВЕ, ВОДНЫЙ РАСТВОР СОЛИ НИМЕСУЛИДА, ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, ОБЛАДАЮЩАЯ ПРОТИВОВОСПАЛИТЕЛЬНОЙ АКТИВНОСТЬЮ 1995
  • Пиротт Бернар
  • Пиель Жеральдин
  • Невен Филипп
  • Дельневий Изабель
  • Жесзи Жозеф
RU2151764C1
Способ получения комплексов включения 7-изопропоксиизофлавона 1986
  • Агнеш Штадлер
  • Йожеф Сейтли
  • Виктор Вайсфайлер
  • Золтан Варгаи
  • Каталин Калон
  • Вера Гергели
  • Тамаш Сютш
SU1757472A3
КОМПОЗИЦИИ АЛКИЛИРОВАННОГО ЦИКЛОДЕКСТРИНА И СПОСОБЫ ИХ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ 2013
  • Антл Винсент Д.
RU2615385C2
НАНОЧАСТИЦЫ, ВКЛЮЧАЮЩИЕ ЦИКЛОДЕКСТРИН И БИОЛОГИЧЕСКИ АКТИВНУЮ МОЛЕКУЛУ, И ИХ ПРИМЕНЕНИЕ 2008
  • Агуэрос Басо Майте
  • Сальман Хешам Х.А.
  • Ираче Гаррета Хуан Мануэль
  • Кампанеро Мартинес Мигель Анхель
RU2460518C2

Иллюстрации к изобретению RU 2 107 695 C1

Реферат патента 1998 года КОМПЛЕКС ВКЛЮЧЕНИЯ 3-МОРФОЛИНОСИДНОНИМИНА ИЛИ ЕГО СОЛИ, ИЛИ ЕГО ТАУТОМЕРНОГО ИЗОМЕРА С ЦИКЛОДЕКСТРИНОМ ИЛИ ПРОИЗВОДНЫМ ЦИКЛОДЕКСТРИНА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СОДЕРЖАЩАЯ ЕГО ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СПОСОБ ПОЛУЧЕНИЯ ФАРМАЦЕВТИЧЕСКОЙ КОМПОЗИЦИИ И СПОСОБ ЛЕЧЕНИЯ СТЕНОКАРДИИ И ИШЕМИЧЕСКОЙ БОЛЕЗНИ ЧЕЛОВЕКА

Использование: получение комплексов включения З-морфолиносиднонимина или его соли или его таутомерного изомера с циклодекстрином или производным циклодекстрина, применение этих комплексов для изготовления фармацевтических композиций и лечения стенокардии и ишемической болезни человека. Сущность изобретения: новые комплексы включения получают взаимодействием З-морфолиносиднонимина или его соли или его таутомерного изомера с циклодекстрином или производным циклодекстрина в водной среде с последующим выделением комплекса из раствора путем удаления воды. 5 с. п.ф-лы, 6 табл.

Формула изобретения RU 2 107 695 C1

1. Комплекс включения 3-морфолиносиднонимина или его соли, или его таутомерного изомера с циклодекстрином или производным циклодекстрина, преимущественно β- или γ-циклодекстрином, гидроксипропил-β-циклодекстрином, гептакис-2,6-диметил-β-циклодекстрином, гептакис-2,3,6-три-о-метил-β-циклодекстрином, ионным водорастворимым циклодекстриновым полимером (СДР SI) с мол.м. менее 10000. 2. Способ получения комплекса включения 3-морфолиносиднонимина или его соли, или его таутомерного изомера с циклодекстрином или производным циклодекстрина, преимущественно β-циклодекстрином, гидроксипропил-β-циклодекстрином, гептакис-2,6-диметил-β-циклодекстрином, гептакис-2,3,6-три-о-метил-β-циклодекстрином, взаимодействием 3-морфолиносиднонимина или его соли, или его таутомерного изомера с циклодекстрином или производным циклодекстрина, преимущественно, β-циклодекстрином, гидроксипропил-β-циклодекстрином, гептакис-2,6-диметил-β-циклодекстрином, гептакис-2,3,6-три-о-метил-β-циклодекстрином, соответственно, в водной среде с последующим выделением комплекса из раствора путем удаления воды. 3. Фармацевтическая композиция, включающая производное сиднонимина и фармацевтически приемлемые целевые добавки, отличающаяся тем, что в качестве производного сиднонимина она содержит комплекс включения, охарактеризованный в п.1. 4. Способ получения фармацевтической композиции, включающий смешение производного сиднонимина с фармацевтически приемлемыми целевыми добавками, отличающийся тем, что в качестве производного сиднонимина используют эффективное количество комплекса включения, охарактеризованного в п.1. 5. Способ лечения стенокардии и ишемической болезни человека введением в организм производного сиднонимина, отличающийся тем, что в качестве производного сиднонимина используют комплекс включения, охарактеризованный в п.1, в дозе 6-800 мг в день.

Приоритет по признакам:
28.03.90 - признаки, касающиеся комплекса включения 3-морфолиносиднонимина или его соли с производным циклодекстрина, способа получения этого комплекса включения, фармацевтической композиции, включающей указанный комплекс, способа ее получения и способа лечения с использованием указанного комплекса;
27.06.90 - признаки, касающиеся комплекса включения таутомерного изомера 3-морфолиносиднонимина с производным циклодекстрина, способа получения этого комплекса включения, фармацевтической композиции на его основе, способа получения указанной фармацевтической композиции и способа лечения с использованием указанного комплекса.

Документы, цитированные в отчете о поиске Патент 1998 года RU2107695C1

EP, заявка 0153999, кл
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
EP, заявка 0127486, кл
Устройство для сортировки каменного угля 1921
  • Фоняков А.П.
SU61A1
Машковский М.Д
Лекарственные средства, - М.: Медицина, ч.1, 1986, с
ПРИСПОСОБЛЕНИЕ ДЛЯ АВТОМАТИЧЕСКОЙ БОКОВОЙ СТАБИЛИЗАЦИИ 1921
  • Кауфман А.К.
SU445A1

RU 2 107 695 C1

Авторы

Мария Викмон[Hu]

Йожеф Сейтли[Hu]

Лайош Сенте[Hu]

Йожеф Гаал[Hu]

Иштван Хермец[Hu]

Агнеш Хорват[Hu]

Каталин Мармароши[Hu]

Габор Хорват[Hu]

Ирейн Мункачи[Hu]

Даты

1998-03-27Публикация

1991-03-28Подача