СПОСОБ ОБРАБОТКИ ДЕТАЛЕЙ КАТОДНЫХ УЗЛОВ ЭЛЕКТРИЧЕСКИХ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ Российский патент 1998 года по МПК C23C8/10 

Описание патента на изобретение RU2119550C1

Изобретение относится к области металлургии применительно к изделиям космической техники, в частности, к термической обработке деталей из прецизионных и титановых сплавов, магнитомягких сталей, входящих в конструкцию электрических реактивных двигателей (ЭРД), и может найти применение в приборостроении и электронике.

Известна технология термической обработки деталей ЭРД, включая нитрооксидирование тонкостенных деталей из титановых сплавов в активных газовых средах (Тарасов А. Н. , ст. "Научно-технические достижения", Вып.5, 1995, ВИМИ, стр.5...7). Способ эффективен при получении высокопрочных деталей типа пусковых электродов катодных узлов.

Известен способ, включающий нитроцементацию механически обработанных деталей, последующую сборку пайкой или точечной сваркой обработанных деталей со снятием припусков по соединяемым поверхностям (Патент России N 2052537, БИ N 2, 1996).

Однако указанные способы не обеспечивают оптимальных терморадиационных характеристик поверхностей, работающих в открытом космосе.

В процессе поиска аналогов не выявлено наиболее близкого аналога (прототипа), что и заявленный способ.

При создании изобретения решалась задача повышения терморадиационных характеристик - коэффициентов поглощения солнечной радиации и степени черноты, снижения трудоемкости изготовления и обработки, упрощения процесса обработки.

Поставленная задача решена за счет того, что осуществляют механическую обработку деталей из прецизионных сплавов, титановых сплавов и магнитомягких сталей, абразивную обработку с формированием класса шероховатости Rz = 35... 150 мкм, затем осуществляют термическое оксидирование при температурах 580.. .720oC в течение 30..90 минут с последующей сборкой узла и соединением деталей узла с изолятором вакуумной пайкой при температуре 1000...1150oC с последующим отпуском ниже температуры оксидирования.

Изобретение проиллюстрировано чертежами, где на фиг.1 изображен разрез общего вида пускового электрода катодного узла, где 1 - корпус, 2 - электрод, 3 - изолятор; на фиг. 2 показан внешний вид поверхности образцов из титанового сплава ВТ 1-0, прецизионного сплава 29 НК и стали 16Х-ВИ перед абразивной обработкой; на фиг. 3 показан внешний вид поверхности образцов после абразивной обработки и термического оксидирования (для измерения As и E на фотометре ФМ-58 и терморадиометре ТРМ).

Способ изобретения осуществляется следующим образом.

Механически обработанные детали катодных узлов после фрезерования корпуса 1 и токарной обработки электрода 2 в соответствии с требованиями чертежа по размерам и классу чистоты подвергают абразивной обработке электрокорундом Al2O3 с формированием класса чистоты Rz = 35...150 мкм по наружной и внутренней поверхностям.

Последующий режим термооксидирования выбран исходя из формирования на поверхности деталей плотной неотслаивающейся оксидной пленки, стабилизирующей дополнительно оптические характеристики поверхности. Температура обработки от 580...720oC и время выдержки 30...90 мин. назначены с учетом марки сплавов и конструкции деталей.

На последующей стадии предусмотрена сборка деталей 1 и 2 с керамическим изолятором 3, вакуумная пайка деталей узла при температуре 1000...1150oC и отпуск.

При практическом осуществлении способа в производстве использованы титановый сплав ВТ 1-0, прецизионный сплав 29НК (ковар), сталь 16Х-ВИ. Опескоструивание проводили электрокорундом по ГОСТ 3647-80.

Термическую обработку - термическое оксидирование после абразивной обработки проводили в печах СНОЛ -1, 6, 2/9; СНОЛ -1, 6.2, 5.1/10M2.

Степень черноты и коэффициент поглощения солнечной радиации измеряли на приборах ФМ-58, ФИ-59, терморадиометре ТРМ.

Пример.

Корпус 1 пускового электрода из титанового сплава ВТ 1-0 после фрезерной обработки подвергали абразивной обработке с формированием поверхностей с шероховатостью Rz = 60. ..80 мкм. А затем термооксидировали при температуре 650oC в течение 60 минут.

Динамика изменения терморадиационных коэффициентов такова: после мехобработки As = 0,53; E = 0,16; после абразивной обработки As = 0,77; E = 0,56; а после термического оксидирования As = 0,87; E = 0,83.

Электроды 2 из прецизионного сплава 29НК после токарной обработки подвергали абразивной обработке с формированием поверхности с шероховатостью Rz = 50 мкм, а затем термооксидировали при температуре 580oC в течение 90 минут. Динамика изменения терморадиационных коэффициентов такова: после токарной обработки As = 0,44; E = 0,15; после абразивной обработки As = 0,68; E = 0,50; после термического оксидирования As = 0,86; E = 0,86.

В результате вакуумной пайки деталей узла с керамическим изолятором при температуре 1050oC получено оптимальное соотношение степени черноты и коэффициента поглощения солнечной радиации как для корпуса, так и для электрода. Поверхностный слой на титановом сплаве частично восстановился и сквозь абразивно обработанную поверхность выявилась зернистая структура титанового сплава, что дополнительно стабилизировало отражательную способность поверхности и степень черноты.

Как следствие получен узел с высокой работоспособностью и ресурсом.

Похожие патенты RU2119550C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОДЖИГНЫХ ЭЛЕКТРОДОВ ИЗ СПЛАВА 29 НК 1992
  • Тарасов А.Н.
  • Горбачев Ю.М.
  • Смирнов В.А.
RU2047665C1
СПОСОБ ИЗГОТОВЛЕНИЯ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОЛЫХ МАГНИТОПРОВОДОВ ИЗ МАГНИТОМЯГКОЙ СТАЛИ И ТИТАНОВЫХ СПЛАВОВ 1991
  • Тарасов А.Н.
  • Горбачев Ю.М.
  • Дубовский С.Ю.
  • Козубский К.Н.
RU2020162C1
СПОСОБ ИЗГОТОВЛЕНИЯ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ АЛЮМООКСИДНОЙ КЕРАМИКИ И ПРЕЦИЗИОННЫХ СПЛАВОВ ЭЛЕКТРОРАКЕТНЫХ ДВИГАТЕЛЕЙ МАЛОЙ ТЯГИ 2001
  • Тарасов А.Н.
  • Горбачев Ю.М.
  • Панфилов В.А.
RU2220832C2
СПОСОБ ОБРАБОТКИ ДЕТАЛЕЙ МАГНИТНЫХ СИСТЕМ 1995
  • Тарасов А.Н.
  • Бобер А.С.
  • Горбачев Ю.М.
RU2087552C1
СПОСОБ КЛЕЕНОСБОРНОГО СОЕДИНЕНИЯ КЕРАМИКИ И МЕТАЛЛА 1996
  • Тарасов А.Н.
  • Горбачев Ю.М.
  • Масленников Н.А.
  • Кузин А.М.
RU2127236C1
СПОСОБ ОБРАБОТКИ ДЕТАЛЕЙ МАГНИТОПРОВОДОВ ЭЛЕКТРИЧЕСКИХ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ МАЛОЙ ТЯГИ 2008
  • Тарасов Анатолий Николаевич
  • Гопанчук Владимир Васильевич
  • Панфилов Виталий Алексеевич
RU2402629C2
СПОСОБ СИЛИЦИРОВАНИЯ ПРЕЦИЗИОННЫХ ДЕТАЛЕЙ ИЗ СПЛАВОВ НА ОСНОВЕ МОЛИБДЕНА И ВОЛЬФРАМА 1992
  • Тарасов А.Н.
RU2025542C1
СПОСОБ ИЗГОТОВЛЕНИЯ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ МАГНИТОМЯГКИХ СТАЛЕЙ МАГНИТНЫХ СИСТЕМ ЭЛЕКТРИЧЕСКИХ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ МАЛОЙ ТЯГИ 1999
  • Тарасов А.Н.
  • Горбачев Ю.М.
  • Мурашко В.М.
RU2181777C2
СПОСОБ ОБРАБОТКИ ПРЕЦИЗИОННЫХ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 1993
  • Тарасов А.Н.
  • Бобер А.С.
  • Горбачев Ю.М.
RU2075536C1
СПОСОБ ИЗГОТОВЛЕНИЯ И ОБРАБОТКИ ДЕТАЛЕЙ МАГНИТОПРОВОДОВ 1992
  • Тарасов А.Н.
  • Горбачев Ю.М.
  • Никулин Н.М.
  • Смирнов В.А.
  • Ярмуш С.В.
RU2085597C1

Иллюстрации к изобретению RU 2 119 550 C1

Реферат патента 1998 года СПОСОБ ОБРАБОТКИ ДЕТАЛЕЙ КАТОДНЫХ УЗЛОВ ЭЛЕКТРИЧЕСКИХ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ

Способ обработки деталей катодных узлов электрических реактивных двигателей заключается в том, что сначала осуществляют механическую обработку деталей из прецизионных сплавов, титановых сплавов и магнитомягких сталей, затем - абразивную обработку с формированием класса шероховатости Rz = 35 - 150 мкм, потом осуществляют термическое оксидирование при 580 - 720oС в течение 30 - 90 мин с последующей сборкой узла и соединением деталей узла с изолятором вакуумной пайкой при 1000 - 1150oС с последующим отпуском ниже температуры оксидирования. Техническим эффектом от реализации изобретения является улучшение терморадиационных характеристик - коэффициентов поглощения солнечной радиации и степени черноты, снижения трудоемкости изготовления и обработки, упрощение процесса обработки. 4 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 119 550 C1

1. Способ обработки деталей катодных узлов электрических реактивных двигателей, заключающийся в том, что осуществляют механическую обработку деталей из прецизионных сплавов, титановых сплавов и магнитомягких сталей, абразивную обработку с формированием класса шероховатости Rz = 35 - 150 мкм, затем осуществляют термическое оксидирование при 580 - 720oC в течение 30 - 90 мин с последующей сборкой узла и соединением деталей узла с изолятором вакуумной пайкой при 1000 - 1150oC с последующим отпуском ниже температуры оксидирования. 2. Способ по п.1, отличающийся тем, что абразивную обработку деталей из прецизионных и титановых сплавов осуществляют с наружной и внутренней сторон, а из магнитомягкой стали - по наружной стороне. 3. Способ по п.1, отличающийся тем, что термическое оксидирование проводят в атмосфере вакуумного пиролиза этаноламинов. 4. Способ по п.1, отличающийся тем, что абразивную обработку проводят электрокорундом Al2O3. 5. Способ по п.1, отличающийся тем, что абразивную обработку проводят только по наружной поверхности деталей.

Документы, цитированные в отчете о поиске Патент 1998 года RU2119550C1

RU 2052537 C1, 20.01.96
СПОСОБ ТЕРМИЧЕСКОГО ОКСИДИРОВАНИЯ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ 0
SU379685A1
US 4661171 A, 28.04.87.

RU 2 119 550 C1

Авторы

Тарасов А.Н.

Масленников Н.А.

Горбачев Ю.М.

Даты

1998-09-27Публикация

1997-04-10Подача