СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ ПЕРЕДАТОЧНЫХ ФУНКЦИЙ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ ОБЪЕКТОВ Российский патент 1999 года по МПК G05B23/00 

Описание патента на изобретение RU2125287C1

Изобретение относится к области автоматики, а именно к измерительной технике и автоматическому регулированию, и может быть использовано для определения коэффициентов передаточных функций динамических объектов сложных структур, например, при проектировании и настройке систем регулирования летательным аппаратом газотурбинным двигателем и т.д.

Известны способы идентификации линейных динамических объектов, основанные на формировании спектральной плотности входного сигнала исследуемого объекта и взаимной спектральной плотности входного и выходного сигналов исследуемого объекта [1].

Основным недостатком известных спектральных методов идентификации является некорректность их применения для идентификации динамических объектов в тех случаях, когда наблюдаемые сигналы наряду со случайными составляющими содержат неслучайные гармонические составляющие, чем обычно характеризуются сигналы, зафиксированные в режиме нормальной эксплуатации. В этом случае сигналы спектральных плотностей характеризуются наличием узких пиков и нулевых провалов, и получение статистических оценок спектральных плотностей по оценкам сигнала корреляционной функции на конечном интервале наблюдений путем непосредственного применения преобразования Фурье не дает желаемых результатов, так как в этом случае дисперсии оценок сигналов спектральных плотностей имеют тот же порядок, что и сами спектральные плотности, что приводит к большим погрешностям [1] . Кроме того, указанные способы весьма критичны к помехам, присутствующим одновременно во входном и выходном сигналах.

Известен также способ [2] определения коэффициентов передаточных функций динамических объектов путем подачи на вход объекта время-степенных пробных сигналов в виде последовательности одиночных импульсов. По этому способу можно определить коэффициенты передаточных функций более высокого порядка.

Однако реализация этого способа требует значительных временных затрат, что связано с экспериментальным определением всех коэффициентов αk время-степенных пробных сигналов αвх = αktk и с необходимостью последовательной настройки модели объекта. Кроме того, на точность определения параметров передаточных функций влияет настройка модели.

Наиболее близким к предлагаемому изобретению является способ определения параметров передаточных функций линейных динамических объектов путем подачи тестового сигнала, стремящегося к установившемуся значению, на вход линейного динамического объекта и интегрирования его выходного сигнала, измерения интервалов времени t1 и t2 от момента подачи тестового сигнала величины A до момента достижения уровней J1 и J2 соответственно и определения постоянной времени

и коэффициента передачи линейного динамического объекта

Этот способ непригоден для определения параметров передаточных функций объектов второго и более высоких порядков.

Задачей, на решение которой направлено заявляемое изобретение, является повышение точности и быстродействия при определении коэффициентов числителя передаточных функций.

Поставленная задача решается тем, что в способе определения параметров передаточных функций линейных динамических объектов путем подачи на вход объекта исследования единичного ступенчатого сигнала и измерения интервала времени от момента подачи тестового сигнала величины A до момента достижения порогового значения, в отличие от прототипа в момент завершения переходного процесса сигнала на выходе объекта y(t) по признаку |yуст-y(t)| ≤ Δд (где yуст - установившееся значение выходного сигнала; Δд - допустимая погрешность завершения свободных колебаний), измеряют длительность переходного процесса T и, учитывая, что изображение выходного сигнала y(t) можно записать в виде

где

m - порядок числителя, формируют специальную функцию Zi(t), представляющую собой интеграл от разности [y(t)-yо(t)]

при этом функция yо(t) выражается через Yуст и свободные колебания объекта

где
функция, определяющая свободные колебания объекта, которую определяют на втором интервале времени t=T, когда формируют свободное движение объекта , для чего с входа объекта при завершении переходного процесса снимают единичный ступенчатый сигнал. Изображение функции Z1(t) можно записать в виде
. (4)
Из выражения (4) следует, что операция интегрирования понижает на единицу порядки числителей изображений yi(p) и yl(p). Следовательно, установившееся значение функции Z1(t) будет определяться составляющей


Из (5) следует, что коэффициент

а для вычисления bi i=2 oC m вычисляют интеграл Zi(t), в подинтегральном выражении которого вместо y(t) подставляют Z(i-1)(t), а вместо

и определяют bi по формуле

При bi= 0 процесс вычислений завершается. При этом теоретически не существует ограничения на порядок числителя исследуемых объектов и не требуется предварительного значения структуры объекта. Кроме того, время эксперимента равно 2T, что позволяет сэкономить время определения коэффициентов для объектов с высоким порядком числителя.

На фиг. 1 приведена структурная схема устройства, реализующего предлагаемый способ; на фиг. 2 - иллюстрация процессов определения коэффициентов полинома числителя; на фиг. 3 - блок-схема программы вычислений коэффициентов полинома числителя, реализуемых ЭВМ.

Устройство содержит формирователь входного сигнала 1, исследуемый объект 2, аналого-цифровой преобразователь 3, ЭВМ 4.

Как видно на фиг. 2 и фиг. 3, при определении коэффициентов bi на первом временном интервале определяется время завершения переходного процесса T и через равные промежутки времени Δt, зависящее от частоты квантования, в память ЭВМ заносятся значения отклика объекта y(t) на воздействие единичного ступенчатого сигнала. На втором интервале времени формируется свободное движение объекта для чего с входа объекта снимается единичный ступенчатый сигнал. Функция yсв(t) так же, как y(t) заносится в память ЭВМ с той же частотой квантования. Далее осуществляется операция интегрирования, вычисляется интеграл Zi(t) и определяется коэффициент b1

Затем вычисляют коэффициент bi i=2 oC m, для чего определяют интеграл Z1(t), в подинтегральном выражении которого вместо y(t) подставляют Z(i-1)(t), а вместо


Рассмотрим реализацию данного способа на примере объекта с передаточной функцией вида

где
τ - постоянная времени;
ξ - коэффициент демпфирования.

Определим b0, b1, b2. Отклик объекта на входное воздействие в виде ступенчатого сигнала X(t)=A • l(t) запишется в следующем виде:

Здесь α = ξ/τ - коэффициент, характеризующий скорость затухания переходного процесса; w0- частота колебаний объекта. Сигнал y(t) имеет 3 составляющие
y(t)=y2(t)+y1(t)+y0(t),
где

Сигналы y2(t), y1(t), y0(t) соответственно отражают составляющие b2p2/A(p), b1p/A(p) и b0/A(p) передаточной функции объекта. Момент завершения переходного процесса T с определенной погрешностью определяется по условию
|yуст-y(t)| ≤ Δд.
Очевидно, что y1(T)=0, y2(T)=0 и y0(T)=Ab0. Тогда y(T)=Ab0. Находим: b0= y(T)/A. Для определения b1 вычисляем интеграл

Сигнал Z1(t) формируется путем интегрирования разности [y(t)-yуст+yсв.(t)] c помощью ЭВМ. Свободное движение было возбуждено в динамическом объекте при начальном условии yсв.(0)=yуст=b0.

По результатам интегрирования имеем: Z1(T)=Ab1/T. Находим: b1=Z1(T)/A. Для определения b2 вычисляем интеграл

где

Тогда

Сигнал Z2(t) формировался путем интегрирования разности [Z1(t)-Z1(T)+Zlcв.(t)] с помощью ЭВМ. Свободное движение было возбуждено в объекте при начальном условии Z1св.(0)= b1/T. По результатам интегрирования имеем Z2(T)=Ab2/T2. Находим b2=Z2(T)T2/A. Найдем b3

где

Тогда

Из этого получаем, что b3=0. Отсюда следует, что порядок числителя m=2.

Таким образом, предлагаемый способ позволяет автоматически определять порядок числителя и вычислять его коэффициенты с большей точностью и быстродействием.

Источники информации
1. Пугачев В.С. Теория случайных функций и ее применение к задачам автоматического управления, М. 1957, с. 395-403, 592-587.

2. Авторское свидетельство СССР N 696416 МКл. G 05 B 23/00, 1979.

3. Авторское свидетельство СССР N 661511 МКл. G 05 B 23/00, 1979 (прототип).

Похожие патенты RU2125287C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ ПЕРЕДАТОЧНЫХ ФУНКЦИЙ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ ОБЪЕКТОВ 1999
  • Гарипов Ф.Г.
  • Юлдашбаев Ш.А.
RU2166789C2
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ ПЕРЕДАТОЧНЫХ ФУНКЦИЙ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ ОБЪЕКТОВ И ЗАДАТЧИК ПРОБНЫХ СИГНАЛОВ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Шаймарданов Ф.А.
  • Андрианова Л.П.
  • Гарипов Ф.Г.
RU2131139C1
СПОСОБ ФУНКЦИОНАЛЬНОГО ДИАГНОСТИРОВАНИЯ ЛИНЕЙНЫХ СИСТЕМ УПРАВЛЕНИЯ 1993
  • Шалобанов С.В.
  • Кочетов А.В.
  • Воронин В.В.
  • Корешкова Т.А.
RU2099766C1
СПОСОБ И УСТРОЙСТВО ИЗМЕРЕНИЯ ПАРАМЕТРОВ МНОГОЭЛЕМЕНТНЫХ ДВУХПОЛЮСНИКОВ 2009
  • Иванов Владимир Ильич
  • Титов Виталий Семенович
  • Голубов Дмитрий Александрович
  • Ставровский Михаил Евгеньевич
  • Олейник Андрей Владимирович
RU2391675C1
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ 1994
  • Уразбахтина Л.Б.
  • Обухова Ю.О.
RU2104495C1
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В ДИНАМИЧЕСКОЙ СИСТЕМЕ 2001
  • Шалобанов С.В.
  • Бобышев В.В.
RU2199776C2
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МНОГОЭЛЕМЕНТНЫХ ДВУХПОЛЮСНЫХ ЦЕПЕЙ 2001
  • Хрисанов Н.Н.
  • Фролагин Д.Б.
RU2212677C2
СПОСОБ ДИАГНОСТИРОВАНИЯ АПЕРИОДИЧЕСКИХ ЗВЕНЬЕВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Шалобанов С.В.
RU2110828C1
СИСТЕМА АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2000
  • Петунин В.И.
  • Фрид А.И.
  • Кузнецов П.В.
RU2172857C1
СПОСОБ ИДЕНТИФИКАЦИИ МАТРИЦЫ КОЭФФИЦИЕНТОВ ПЕРЕДАЧИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1994
  • Куликов Г.Г.
  • Арьков В.Ю.
  • Брейкин Т.В.
RU2057365C1

Иллюстрации к изобретению RU 2 125 287 C1

Реферат патента 1999 года СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ ПЕРЕДАТОЧНЫХ ФУНКЦИЙ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ ОБЪЕКТОВ

Изобретение относится к области автоматики, а именно к измерительной технике и автоматическому регулированию, и может быть использовано при определении коэффициентов числителя передаточных функций динамических объектов сложных структур, например, при проектировании и настройке систем регулирования летательным аппаратом, газотурбинным двигателем и т.д. Техническим результатом является повышение точности и быстродействия при определении коэффициентов числителя передаточной функции. Технический результат достигается за счет того, что в момент завершения переходного процесса сигнала на выходе объекта y( t) по признаку |yуст-y(t)| ≤ Δд измеряют длительность переходного процесса Т и формируют специальную функцию Zi(t). На втором интервале времени t = T формируют свободное движение объекта для чего с входа объекта при завершении переходного процесса снимают единичный ступенчатый сигнал и определяют коэффициент

а для вычисления bi(i = 2 oC m) вычисляют интеграл Zi(t) и определяют bi по формуле
. 3 ил.

Формула изобретения RU 2 125 287 C1

Способ определения коэффициентов передаточных функций линейных динамических объектов путем подачи на вход объекта исследования единичного ступенчатого сигнала и измерения интервала времени от момента подачи тестового сигнала величины A до момента достижения порогового значения, отличающийся тем, что в момент завершения переходного процесса сигнала на выходе объекта y(t) по признаку (где yуст - установившееся значение выходного сигнала, Δд - допустимая погрешность завершения свободных колебаний) измеряют длительность переходного процесса T и, учитывая, что изображение выходного сигнала y(t) можно записать в виде

где

m - порядок числителя, формируют специальную функцию Zi(t), представляющую собой интеграл от разности [Y(t)-Yo(t)]

при этом функция yo(t) выражается через yуст и свободные колебания объекта

где функция, определяющая свободные колебания объекта, которую определяют на втором интервале времени t =T, когда формируют свободное движение объекта для чего со входа объекта при завершении переходного процесса снимают единичный ступенчатый сигнал и определяют коэффициент

где Z1уст = Z1 (T), а для вычисления bi(i = 2oCm) вычисляют интервал Zi(t), в подинтегральном выражении которого вместо y(t) представляют Zi-1(t), а вместо

и определяют bi по формуле
л

Документы, цитированные в отчете о поиске Патент 1999 года RU2125287C1

Способ определения параметров передаточных функций линейных динамических объектов 1977
  • Горбиль Виктор Павлович
SU661511A1
Способ определения коэффициентов передаточных функций систем регулирования 1975
  • Соседка Вилий Лукич
  • Липец Семен Яковлевич
  • Коломойцева Людмила Федоровна
SU696416A1
Способ определения параметров передаточной функции линейного динамического звена и устройство для его осуществления 1986
  • Ингстер Измаил Наумович
  • Зенкевич Евгения Васильевна
  • Каманин Валерий Владимирович
  • Кулиш Валерий Гаврилович
  • Черников Вячеслав Львович
SU1377826A1
Пугачев В.С
Теория случайных функций и ее применение к задачам автоматического управления
- М.: Физматиз, 1957, с.395-403, 592-597.

RU 2 125 287 C1

Авторы

Шаймарданов Ф.А.

Андрианова Л.П.

Гарипов Ф.Г.

Даты

1999-01-20Публикация

1997-05-06Подача