Изобретение относится к области агропрома, в частности к производству (выращиванию) экологически чистых грибов с высокими вкусовыми и питательными качествами и может быть использован текстильными предприятиями, имеющими неутилизируемые отходы, а также садоводами, ферментами и работниками коллективных хозяйств.
Известны способы выращивания грибов в различных биотехнологических системах с оптимизированными по питательным свойствам субстратами, например, на питательной среде Чапека с глюкозой [1]. Способ позволяет получить достаточно высокую производительность продукции по биомассе, однако требует большого расхода дорогостоящей глюкозы, потребление последней в зависимости от варианта культивирования колеблется от 0,05 до 40 г/л. Кроме того, этому способу присущи все недостатки, характерные для культивирования различных культур в жидких средах.
Последние могут быть устранены с использованием плотной питательной среды, например, пластинок кремнекислого геля, пропитанных жидкой средой Чапека, содержащей глюкозу [2]. При этом максимальная скорость роста достигается при концентрации глюкозы 0,2 г/л. Тем не менее остальные недостатки, присущие глюкозосодержащим питательным средам, остаются.
Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ выращивания грибной биомассы на субстрате, в качестве которого служила измельченная до частиц 0,05 - 2,0 мм модифицированная льняная костра. Модификация мелкой костры заключалась в обработке ее 1%-ным раствором H2SO4 при модуле 1:10, 1 ати в течение 1 часа. После охлаждения на основе полученной суспензии готовили питательный раствор (в маc.%): льняная костра - 2,0; NH4NO3 - 0,5; KH2PO4 - 0,02; MgSO4 • 7H2O - 0,05; кукурузный экстракт - 1,0. Исходный pH среды 5,5 - 5,7 [3].
Предварительная обработка измельченной костры 1%-ным раствором H2SO4 приводит к снижению содержания углеводов всех фракций, и в первую очередь гемицеллюлозы и целлюлозы. Однако использование данного способа модификации льняной костры с последующим культивированием на ней грибов позволило повысить усвояемость льняной костры за счет увеличения в ней легкодоступных углеводов. Кроме того, кислотный гидролиз субстрата приводит к уменьшению содержания не только полисахаридов II порядка (гликанов), но и вымыванию легкоусвояемых углеводов, входящих в состав спирторастворимой фракции.
Недостатком данного способа является его сложность, вызванная предварительным гидролизом костры раствором серной кислоты, ограничение питательной среды только кострой, а также все недостатки, обусловленные использованием сыпучих несвязанных сред: трудности транспортировки, насыщения питательным раствором, эксплуатации, а также потери при всех этих операциях.
Техническим результатом изобретения является устранение указанных недостатков, а именно: расширение типов субстратов, в качестве которых предлагается использовать льняную костру, отходы текстильной переработки хлопкового волокна "галочка" и другие целлюлозные отходы текстильного производства, упрощение технологического процесса - исключение операции предварительного гидролиза и использование питательной среды в виде связанного пористого композиционного материала при сохранении выхода биомассы грибов.
Это достигается тем, что в предлагаемом способе целлюлозные отходы смешиваются с вспененной реакционной массой, состоящей из водных растворов поливинилового спирта (ПВС), поверхностно-активного вещества (ПАВ), сшивающего агента и в каталитических количествах соляной или серной кислоты. Перед введением целлюлозных отходов реакционная масса вышеуказанного состава вспенивается до увеличения объема в 2,5 - 3 раза по сравнению с исходным. Далее смесь кондиционируется в течение часа, промывается и насыщается питательным раствором состава (г/л):
глюкоза - 10,1; пептон - 2,5; KH2PO4 - 0,6; K2HPO4 - 0,4
MgSO4 - 0,5; CuSO4 - 0,05; FeSO4 • 7H2O - 0,005; CaCl2 - 0,05
Заявляемая совокупность последовательных действий позволяет достичь поставленную цель изобретения за счет того, что в результате проведенных действий получается питательная среда для выращивания грибной биомассы, используемая неоднократно в продолжение нескольких циклов до полной деструкции целлюлозного наполнителя целлюлолитическими и лигнолитическими ферментами, синтезируемыми грибами в процессе их развития.
При изучении известных технических решений в данной области техники совокупность признаков, отличающих заявленный способ, не была выявлена. Данное решение существенно отличается от известных.
Заявленное техническое решение явным образом не следует из уровня техники и имеет изобретательский уровень.
Заявленное решение может быть реализовано на известных компонентах и является промышленно применимым.
Сущность способа заключается в том, что целлюлозный наполнитель в количестве от 10 см3 до 30 см3 (насыпная масса льняной костры 0,11 г/см3; хлопковых очесов - 0,39 г/см3; смеси льняная костра/хлопковые очесы - 0,25 см3) вводится в реакционную смесь, состоящую из водного раствора ПВС (концентрация от 2,5 до 10 мас.%), водного раствора неионогенного поверхностно-активного вещества (одного из моноалкил- и моноалкилфениловых эфиров полиэтиленгликоля с концентрацией от 5 до 10 мас.%), сшивающего агента (мочевина, глиоксаль, с концентрацией от 10 до 20 мас.%), и вспенивается до увеличения объема в 2,5 - 3 раза в течение 10 - 15 минут. В конце перемешивания в реакционную смесь вводится катализатор реакции ацетализирования- соляная или серная кислота - в количестве 10 - 20 мл. Целлюлозный наполнитель вводится во вспененную массу, после чего производится кондиционное структурирование без механического перемешивания при температуре 50 - 70oC в течение 1 часа, в результате чего пена отверждается. Наличие в смеси значительного количества ПАВ и высокая гидрофильность наполнителя, смачивающая способность пены оказываются достаточными условиями, чтобы при интенсивном перемешивании добиться равномерного распределения наполнителя в структуре твердеющего композиционного материала. Насыщение композиции осуществляют питательным раствором состава (г/л):
глюкоза 10,0 - 10,5; пептон 2,5 - 2,6; KH2PO4 0,6 - 0,7; FeSO4 • 7H2O - 0,005 - 0,006; CaCl2 - 0,05 - 0,06.
Ниже приводятся примеры, разъясняющие сущность изобретения.
Пример 1
Для приготовления питательной среды 210 мл 5%-ного водного раствора ПВС перемешивают в гомогенизаторе с 7,5 мл неионогенного ПАВ марки ОП-7, 15 г мочевины и 15 мл концентрированной соляной кислоты. Все компоненты вводятся в реактор, снабженный якорной мешалкой в вышеуказанной последовательности после предварительного перемешивания предыдущего компонента в течение 1 - 2 мин. Полученная гомогенная масса вспенивается вращением мешалки с скоростью 160 - 240 об/мин до увеличения объема в 2,5 - 3 раза. Вспененная масса смешивается с 20 см3 (2,2 г) льняной костры. Полученную композицию заливают в форму, имеющую объем, соответствующий требованиям потребителя. После кондиционирования при температуре 60oC в течение 60 мин при переходе полимерной композиционной системы в стабильное состояние происходит изменение характера распределения концентрацией компонентов в зоне контакта с поверхностью формы, что обеспечивает образование поверхности композиции. Затем готовую композицию промывают до нейтрального значения pH 5,5 и отсутствия следов сшивающего агента в промывных водах.
Насыщение композиции проводят водным питательным раствором состава (мас. %): глюкоза - 10,0; KH2PO4 - 0,7; пептон - 2,5; K2HPO4 - 0,4; MgSO4 - 0,5; CuSO4 - 0,05; FeSO4 • 7H2O - 0,005; CaCl2 - 0,05.
Расчетное количество питательного раствора соответствует влагопоглощению композиции (модуль 2,8). Химическое связывание компонентов состава контролируется сравнительным определением белка в питательном растворе до насыщения и отсутствием последнего в отжимной жидкости. После пропитки композиция является субстратом для выращивания грибной биомассы или питательной средой для выращивания грибной биомассы. Для хранения и транспортировки питательную среду подвергают сушке при температуре не выше 50oC. Перед высаживанием посевного материала питательную среду пропитывают питьевой водой.
Посевной материал, например, вешенки обыкновенной Pleurotus ostreauts в виде диска мицелия (d = 10 мм) помещали в питательную среду на глубину l = 10 мм. Режим роста мицелия состоял из двух стадий: охлаждение до t = 4oC в течение 48 часов, а затем при температуре 22 - 26oC культивировали при поддержании постоянной влажности на поверхности питательной среды. Плодовые тела появлялись на 24-е сутки. Максимальная масса плодовых тел достигалась на 29-е сутки и составила 29,5% от массы целлюлозного наполнителя (льняной костры) композиции.
Остальные примеры воспроизведены по той же методике с изменением режимных показателей и представлены в табл. 1, 2.
В таблицах 1, 2 приведены примеры режимов по изготовлению питательной среды, включающие получение композиции, ее пропитку питательным раствором и выращивание на ней грибной биомассы по методике, описанной в примере 1 (табл. 1) с изменением режимных показателей. Увеличение объема целлюлозного наполнителя от 10 до 30 см3 (от 1,1 до 3,3 г) приводит к возрастанию плотности композиции и снижению ее пористости, влажности и влагопоглощения (примеры 1, 2, 3). Существенно изменяется плотность композиции при увеличении насыпной массы целлюлозных наполнителей (примеры 2, 4, 6).
Изменение режима кондиционирования влияет на характеристики композиции: увеличение степени вспенивания, времени и температуры кондиционирования снижают плотность и повышают пористость, влажность и влагопоглощение от значений, приведенных в примерах 14, 16, 21 до оптимальных (пример 2), дальнейшее увеличение этих параметров не дает существенных изменений измеряемых характеристик композиции (примеры 15, 17, 22).
Изменение состава питательного раствора в указанных в табл. 2 интервалах значений концентраций составляющих раствор компонентов не дает существенного изменения для достижения конечной цели - выращивания грибной биомассы.
Следует отметить, что при использовании для выращивания грибов композиций с меньшей плотностью, обусловливающей более высокую величину биоконверсии наполнителя, урожайность биомассы несколько снижается, однако эксперименты, проведенные в лаборатории биохимии грибов Санкт-Петербургского ботанического института им. В.Л. Комарова РАН, в соответствии с предлагаемым в заявке объектом, показали, что при уменьшении плотности питательной среды грибы имеют эстетически более привлекательный внешний вид, что может быть использовано при оформлении помещений в качестве элементов дизайна. Увеличение плотности композиции приводит к искажению формы выращенных плодовых тел (удлинение ножки, уменьшение размеров шляпки) и уменьшению размеров грибов, хотя и обеспечивает наиболее высокую урожайность биомассы грибов.
Полученная питательная среда может быть рекомендована не только для выращивания грибной биомассы, но и для других растений, в том числе декоративных, или в сочетании грибов с декоративными растениями для украшения современных интерьеров. Поэтому режимы получения композиций должны выбираться в соответствии с предполагаемым применением питательной среды.
Техническим результатом изобретения является получение питательной среды для выращивания грибной биомассы в виде связанной пористой композиции с использованием отходов текстильной переработки хлопка и льна при сохранении урожайности питательной среды в сравнении с прототипом.
Список литературы
1. Тюльпанова В.А., Козлова Т.Л., Титякова Н.И. Влияние условий культивирования на рост, конидиогенез и патогенные свойства гриба Paecitomyces farinosus (Dickson; Fr. ) Brown et Smith. //Микология и фитопатология. - 1989. - Т. 23. Вып. 2. - С. 124-128.
2. Шемшур Т.В., Подгорский В.С., Громозова Е.Н. Кинетика роста Thieldvia terrestris на плотной питательной среде. //Микология и фитопатология. - 1989. - Т. 23. Вып. 2. - С. 156-158.
3. Щерба В. В. , Стахеев И.В., Бабицкая В.Г., Костина А.М. Деградация полисахаридного комплекса льняной костры мицелиальными грибами в условиях глубинной ферментации. //Микология и фитопатология. - 1989. - Т. 23. Вып. 2. - С. 159-164. Прототип.
название | год | авторы | номер документа |
---|---|---|---|
Способ культивирования микромицета Trichoderma virens | 2018 |
|
RU2695674C1 |
ИСКУССТВЕННЫЙ ГРУНТ ДЛЯ ВЫРАЩИВАНИЯ РАСТЕНИЙ | 2001 |
|
RU2209543C2 |
СОСТАВ ДЛЯ КОМПЛЕКСНОЙ ОТДЕЛКИ ТКАНЕЙ (ВАРИАНТЫ) | 1998 |
|
RU2164970C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОЙ ЦЕЛЛЮЛОЗЫ | 2000 |
|
RU2186071C2 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СУЛЬФИДОВ | 1995 |
|
RU2099292C1 |
ТЕКСТИЛЬНЫЙ ОБЪЕМНЫЙ ВОЛОКНИСТЫЙ КАТАЛИЗАТОР | 1997 |
|
RU2118908C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕКСТИЛЬНОГО КАТАЛИЗАТОРА НА ПОДЛОЖКЕ ИЗ СТЕКЛОВОЛОКОН | 1998 |
|
RU2134613C1 |
ШТАММ ГРИБА ASPERGILLUS SPECIES - ПРОДУЦЕНТ БЕЛКА И ЦЕЛЛЮЛАЗ | 1992 |
|
RU2029784C1 |
СПОСОБ ПОЛУЧЕНИЯ 1,2,4-ТРИАЗОЛОНА-5 | 1992 |
|
RU2085556C1 |
ШТАММ БАКТЕРИЙ SERRATIA MARCESCENS-ПРОДУЦЕНТ ЛИПАЗЫ | 1997 |
|
RU2148645C1 |
Изобретение относится к агропромышленности, в частности к производству сред для выращивания экологически чистых грибов. Способ получения среды заключается в следующем: готовят реакционную смесь, состоящую из водного раствора поливинилового спирта (ПВС), водного раствора неионогенного поверхностно-активного вещества (ПАВ) и сшивающего агента (мочевина, глиоксаль). Смесь вспенивают до увеличения объема в 2,5-3 раза и вводят катализатор реакции ацеталирования. Затем в вспененную массу вводят целлюлозные отходы текстильного производства и полученную композицию заливают в формы, кондиционируют при нагревании, промывают до нейтрального значения рН и отсутствия следов сшивающего агента в промывных водах. Промытую композицию пропитывают питательным раствором. В качестве отходов текстильного производства используют льняную костру и/или хлопковые очесы "галочка". Питательный раствор содержит глюкозу, пептон, KH2PO4, K2HPO4, MgSO4, CuSO4,FeSO4•7H2O, CaCl2. Среда позволяет увеличить урожайность грибов. 2 з.п. ф-лы, 2 табл.
Отходы текстильного производства - 10 - 30 см3
2,5 - 10%-ный водный раствор поливинилового спирта - 200 - 225 мл
Моноалкил- и моноалкилфениловые эфиры полиэтиленгликоля, мл - 5 - 10
Мочевина или глиоксаль, мл - 10 - 20
Концентрированная соляная или серная кислота - 10 - 20
3. Способ по п.1, отличающийся тем, что в качестве питательного раствора используют раствор, содержащий следующие компоненты, мас.%:
Глюкоза - 10 - 10,5
Пептон - 2,5 - 2,6
KH2PO4 - 0,6 - 0,7
K2HPO4 - 0,4 - 0,5
MgSO4 - 0,5 - 0,6
CuSO4 - 0,05 - 0,06
FeSO4 • 7H2O - 0,005 - 0,006
CaCl2 - 0,05 - 0,06:
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Микология и фитопатология, 1989, т.23, вып.2, с.124 - 128 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Там же, с.159 - 164. |
Авторы
Даты
1999-01-27—Публикация
1996-06-18—Подача