СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТИДИЕНА Российский патент 1999 года по МПК C08F136/06 

Описание патента на изобретение RU2125578C1

Изобретение относится к области технологии синтетических каучуков, а именно к способам получения стереорегулярных полидиенов под влиянием каталитических систем координационного типа. Заявляемый способ может найти применение в нефтехимической промышленности.

Известен способ получения цис-1,4-полбутадиена в присутствии каталитических систем, состоящих из растворимого в углеводороде соединения кобальта (нафтената, ксантогената, диэтилдитиокарбомата и тому подобных производных кобальта), алкилалюминийхлорида (этил-, или изобутилалюминийсесквихлорида, диэтил- или диизобутилалюминиймонохлорида) и модифицирующей добавки (вода, дилаурилтиодипропионат, метилтретичнобутиловый эфир) (Тихомирова И.Н., Кривошеин В. В., Коноваленко Н.А., Тихомиров Г.С. "Синтез цис-1,4-полибутадиена для ударопрочных пластиков". -Ж. "Каучук и резина", 1991, N 9, с. 5-8) [1, прототип].

Существенным недостатком этого соединения является большой расход алюминийорганического соединения (10-20 мол/100 кг бутадиена), узкий интервал количества вводимой модифицирующей добавки (0,5 - 0,4 мол/мол Al для метилтретбутилового эфира и 0,02 мол/мол Al для дилаурилтиодипропионата), необходимость ввода в реакционную среду воды также в узком интервале (0,001 - 0,003 мол/л).

Высокая концентрация алюминийорганического соединения в реакционной зоне способствует протеканию вторичных катионных процессов, образования геля и бутентолила в полимере.

Отклонение от оптимального интервала дозировок модифицирующих добавок приводит к резкому изменению всего технологического режима (снижение выхода каучука, завышение или снижение молекулярной массы) и ухудшению качества продукции.

Сущность предлагаемого способа заключается в проведении полимеризации бутадиена в присутствии предварительно сформированного каталитического комплекса из растворимой соли кобальта, алкилалюминийхлорида и дополнительно введенного сопряженного диена, взятых в молярном соотношении Co:Al:диен = 1: (8-15): (10-50), а в качестве модифицирующей добавки предлагается применять соединение из группы или аминоалоксанов следующей формулы:

в количестве 0,01 - 2,0 моль/100 кг бутадиена,
где R этил-, изобутил-радикал;
R' - AlR2;
R''- H,AlR2
или полиалоксанов следующей формулы:

в количестве 0,001 - 5,0 моль/100 кг бутадиена,
где n = 0-2, а R - этил-, изобутил-радикал.

Применение предварительно сформированного комплекса позволяет снизить количество алюмоорганического соединения по сравнению с прототипом в 10 раз и снизить образование геля и бутентолила в процессе полимеризации. Использование предлагаемых модификаторов с более широким диапазоном концентраций позволяет плавно регулировать технологический режим и получать марки каучука с необходимым набором вязкостных показателей. Предлагаемые модификаторы активизируют каталитический комплекс в отсутствие воды даже при низких температурах полимеризации, вплоть до -25oC. А снижение температуры полимеризации в свою очередь способствует повышению качества полимера: повышается содержание цис-1,4-звеньев до 96-97%, снижается содержание геля и бутентолила до полного отсутствия, снижается разветвленность, улучшаются прочностные показатели вулканизатов на основе этого каучука.

Синтез модификаторов осуществляется из доступных соединений. Так, аминоалоксаны получают по реакции взаимодействия триалкила алюминия с этаноламином, выдерживая определенное молярное соотношение между компонентами и временем реакции. Температура реакции - комнатная, давление - атмосферное.

Соединение из группы полиалоксанов получают по реакции взаимодействия триалкилов алюминия с водой при следующих условиях: температура реакционной смеси - от 0 до -10oC, молярное соотношение вода : триалкилалюминия (0,8 - 0,9) : 1, время взаимодействия - от 1 до 2 часов. Подробные синтезы модификаторов описаны в примерах.

Предлагаемый способ получения цис-1,4-полибутадиена иллюстрируется примерами и таблицей.

Пример 1 [Прототип].

В металлический реактор объемом 3 л с охлаждающей рубашкой и мешалкой загружают 160 мл (100 г) бутадиена, 740 мл толуола при 0oC. В реакционную смесь вводят последовательно 5 мл толуольного раствора дилаурилтиодипропионата (ДЛТДП) с концентрацией 0,05 мол/п (0,25 моль/100 кг бутадиена), 10 мл толуольного раствора этилалюминийсесквихлорида (ЭАСХ) с концентрацией 1 моль/л (10 моль/100 кг бутадиена), 2 мл толуольного раствора ксантогената кобальта (КСТК) с концентрацией 0,05 мол/л (0,1 моль/100 кг бутадиена). Молярное соотношение компонентов при этом составляет КСТК:ЭАСХ:ДЛТДП=1:100:2,5.

Температуру полимеризации выдерживают 40oC. Выход полибутадиена через 4 часа составляет 85%. Пролимеризат выгружают в раствор этанола, подкисленной воды (pH 5) и антиоксиданта фенольного типа, взятого в количестве 0,5 - 0,8 мас. % на полимер. Проводят дегазацию острым паром. Окончательно полимер высушивают на вальцах при 150oC.

Характеристическая вязкость полибутадиена 3,2 дл/г, содержание цис-1,4-звеньев 93%, содержание геля 0,1 мас.%, Mw = 460 • 103, Mn = 128 • 103, Mw/Mn = 3,6, разветвленность 0,483.

Физико-механические показатели вулканизата: модуль при 300%-ном удлинении 90 кг/см2; условная прочность при растяжении 170 кг/см2.

Пример 2.

Полимеризацию бутадиена проводят по примеру 1.

Отличие состоит в том, что в качестве катализатора применяют предварительно сформированный следующим образом комплекс: в стеклянный реактор объемом 0,25 л при температуре 0oC загружают при постоянном перемешивании 2 мл толуольного раствора ксантогената кобальта с концентрацией 0,05 мол/л (0,1 ммоль), 10 мл толуольного раствора этилалюминийсесквихлорида с концентрацией 0,1 мол/л (1,0 ммоль) и 20 мл толуольного раствора изопрена с концентрацией 0,1 моль/л (2,0 ммоль). Молярное соотношение компонентов при этом составляет КСТК:ЭАСХ:изопрен=1:10:20.

Доводят температуру комплекса до 25oC и продолжают перемешивание 2 часа.

Отличие состоит также в том, что в качестве модификатора применяют аминоалоксан, получаемый следующим образом:
в стеклянный реактор объемом 0,15 л при температуре +25oC загружают 10 мл толуольного раствора триизобутилалюминия с концентрацией 0,02 мол/л (0,2 ммоль) и при постоянном перемешивании подают по каплям 0,1 ммоль моноэтаноламина, т.е. молярное соотношение Al:моноэтаноламин = 2:1.

Реакцию проводят в течение 1,5 часов. Получают соединение следующей формулы:

При проведении полимеризации в исходную смесь толуола и бутадиена при температуре 0oC вначале подают все количество приготовленного модификатора (0,2 моль/100 кг бутадиена по алюминию), а потом все количество приготовленного каталитического комплекса (0,1 моль/100 кг бутадиена по кобальту). Температуру полимеризации поддерживают +10oC, выход полимера за 2,5 часа достигает 88%, характеристическая вязкость 3,7 дл/г, содержание цис-1,4-звеньев 95,8%, геля 0,01%, бутадиена 0,01%, Mw = 355 • 103, Mn = 126 • 103, Mw/Mn = 2,8, параметр разветвленности 0,413.

Модуль при 300%-ном удлинении 95 кг/см2, условная прочность при растяжении 198 кг/см2.

Пример 3.

Полимеризацию проводят по примеру 2, но в качестве модификатора в шихту подают аминоалоксан следующей формулы:

в количестве 0,01 моль/100 кг бутадиена.

Это соединение получают по реакции, описанной в примере 2, но молярное соотношение Al:моноэтаноламин = 3.

Полимеризацию проводят при температуре 20oC. Выход полимера достигает 90% за 2 часа. Характеристическая вязкость 2,5 дл/г, содержание цис-1,4-звеньев 95%, параметр разветвленности 0,4, Mw=350 • 103, Mn=140 • 103, Mw/Mn = 2,5, содержание геля 0,02%, модуль при 300%-ном удлинении 92 кг/см2, условная прочность при растяжении 187 кг/см2.

Пример 4.

Полимеризацию проводят по примеру 2, но в качестве модификатора в шихту подают аминоалоксан в количестве 2 моль/100 кг бутадиена, который получают по реакции, описанной в примере 2. В качестве алюминийорганического соединения применяют триэтилалюминий и выдерживают молярное соотношение Al:моноэтаноламин=2:1. Время реакции 4 часа. Получают соединение следующей формулы:
(C2-H5)2AlOCH2-CH2-NH-Al(C2H5)2.

Температуру полимеризации снижают до -25oC. Время полимеризации 4 часа. Выход полибутадиена составляет 89%.

Пример 5.

Полимеризацию проводят по примеру 1, но в качестве катализатора применяют предварительно сформированный следующим образом каталитический комплекс: в стеклянный реактор объемом 0,25 л при температуре 0oC загружают при постоянном перемешивании 2 мл толуольного раствора нафтената кобальта с концентрацией 0,05 мол/л (0,1 ммоль), 15 мл толуольного раствора изобутилалюминийсесквихлорида с концентрацией 0,1 мол/л (1,5 ммоль) и 50 мл толуольного раствора бутадиена с концентрацией 0,1 моль/л (5,0 ммоль). Молярное соотношение компонентов при этом составляет Co:Al:бутадиен=1:15:50.

Доводят температуру комплекса до 25oC и продолжают перемешивание 2 часа.

Отличие состоит также в том, что в качестве модификатора применяют полиалюмоксан, получаемый следующим образом: в стеклянный реактор объемом 0,15 л при температуре -10oC загружают 10 мл толуольного раствора триизобутилалюминия с концентрацией 0,2 мол/л (2 ммоль) и при постоянном перемешивании подают по каплям 1,8 ммоль дистиллированной воды, т.е. молярное соотношение Al:вода = 1:0,9.

Реакцию проводят в течение 1 часа. Получают соединение следующей формулы:

При проведении полимеризации в исходную смесь толуола и бутадиена при температуре 0oC вначале подают все количество приготовленного модификатора (2 моль/100 кг бутадиена по алюминию), а потом все количество приготовленного каталитического комплекса (0,1 моль/100 кг бутадиена по кобальту). Температуру полимеризации поддерживают 0oC, выход полимера за 4 часа достигает 88%, характеристическая вязкость 4,0 дл/г, содержание цис-1,4-звеньев 95,8%, геля 0,01%, бутентолила 0,01%, Mw = 368 • 103, Mn = 138 • 103, Mw/Mn = 2,8, параметр разветвленности 0,413.

Модуль при 300%-ном удлинении 95 кг/см2, условная прочность при растяжении 198 кг/см2.

Пример 6.

Полимеризацию проводят по примеру 5, но в качестве модификатора применяют полиалюмоксан с п = 2, получаемый по реакции взаимодействия триэтилалюминия с водой в молярном соотношении Al:вода = 1:1 при температуре -10oC. Модификатор вводят в исходную смесь толуола и бутадиена при температуре 0oC в количестве 0,001 моль/100 кг бутадиена. Затем вводят 35 мл (0,05 ммоль) каталитического комплекса, приготовленного по примеру 5.

Полимеризацию проводят при температуре +50oC. Выход полибутадиена составляет 90%, характеристическая вязкость 3,0 дл/г, содержание цис-1,4-звеньев 95%, геля 0,021%, бутентолила 0,03%.

Mw = 324 • 103, Mn = 145 • 103, Mw/Mn = 2,24, параметр разветвленности 0,413.

Модуль при 300%-ном удлинении 91 кг/см2, условная прочность при растяжении 192 кг/см2.

Пример 7.

Полимеризацию проводят по примеру 5, но в качестве модификатора применяют полиалюмоксан, получаемый по реакции взаимодействия с водой триизобутилалюминия. Молярное соотношение Al:вода = 1:0,5, температура синтеза 0oC.

Реакцию проводят в течение 1 часа. Получают соединение следующей формулы:

При проведении полимеризации в исходную смесь толуола и бутадиена при температуре 0oC вначале подают приготовленный модификатор (5 моль/100 кг бутадиена по алюминию), а потом каталитический комплекс (0,05 моль/100 кг бутадиена по кобальту).

Температуру полимеризации поддерживают +10oC, выход полимера за 4 часа достигает 98%, характеристическая вязкость 2,0 дл/г, содержание цис-1,4-звеньев 95%, геля 0,01%, бутентолила 0,01%. Mw = 224 • 103, Mn = 132 • 103, Mw/Mn = 1,6. Разветвленность 0,4. Модуль при 300%-ном удлинении 90 кг/см2, условная прочность при растяжении 192 кг/см2.

Таким образом, предлагаемый способ полимеризации бутадиена на предварительно сформированном каталитическом комплексе и в присутствии модификаторов типа аминоалоксанов и полиалоксанов позволяет работать в более широком температурном диапазоне и получать полимер с повышенными показателями по микроструктуре, с узким молекулярно-массовым распределением, с низким содержанием геля, бутентилола. Вулканизаты на основе получаемого полибутадиена характеризуются высокими прочностными показателями.

Литература
1. Ж. "Каучук и резина", 1991, N 9, стр. 5-8.

Похожие патенты RU2125578C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СИНДИОТАКТИЧЕСКОГО 1,2-ПОЛИБУТАДИЕНА 2000
  • Бырихина Н.Н.
  • Кузнецова Е.И.
  • Аксенов В.И.
  • Ряховский В.С.
  • Дроздов Б.Т.
RU2177008C2
ВУЛКАНИЗУЕМАЯ КОМПОЗИЦИЯ 1998
  • Забористов В.Н.
  • Ряховский В.С.
  • Бырихина Н.Н.
  • Бырихин А.С.
  • Кузнецова Е.И.
  • Шарыгин П.В.
RU2148595C1
ВУЛКАНИЗУЕМАЯ КОМПОЗИЦИЯ НА ОСНОВЕ ЦИС-1,4-БУТАДИЕНОВОГО КАУЧУКА 1998
  • Забористов В.Н.
  • Калистратова В.В.
  • Царина В.С.
  • Гольберг И.П.
  • Ряховский В.С.
  • Гозенко Л.Ф.
  • Куперман Ф.Е.
RU2154656C2
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ДИЕНОВОГО КАУЧУКА 2003
  • Забористов В.Н.
  • Беликов В.А.
  • Ряховский В.С.
  • Марков Б.А.
  • Шарыгин П.В.
RU2263121C2
КОМПОЗИЦИЯ НА ОСНОВЕ ЦИС-БУТАДИЕНОВОГО КАУЧУКА 2003
  • Забористов Валерий Николаевич
  • Беликов Владимир Анатольевич
  • Ряховский Валерий Сергеевич
  • Калистратова Вера Владимировна
RU2286362C2
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТАДИЕНА И ЦИС-1,4-СОПОЛИМЕРА БУТАДИЕНА И ИЗОПРЕНА 1997
  • Забористов В.Н.
  • Калистратова В.В.
  • Ряховский В.С.
  • Марков Б.А.
  • Царина В.С.
  • Гольберг И.П.
RU2127280C1
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТАДИЕНА 1996
  • Ряховский В.С.
  • Иванников В.В.
  • Гольберг И.П.
  • Марков Б.А.
  • Забористов В.Н.
  • Калистратова В.В.
RU2096422C1
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТАДИЕНА 1998
  • Забористов В.Н.
  • Калистратова В.В.
  • Марков Б.А.
RU2151777C1
СПОСОБ ПОЛУЧЕНИЯ НИЗКОМОЛЕКУЛЯРНОГО 1,2-ПОЛИБУТАДИЕНА 1998
  • Золотарев В.Л.
  • Сазыкин В.В.
  • Аксенов В.И.
  • Соколова А.Д.
  • Хлустиков В.И.
RU2139299C1
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТАДИЕНА 1995
  • Забористов В.Н.
  • Калистратова В.В.
  • Гольберг И.П.
  • Антонова Н.Г.
  • Хлустиков В.И.
RU2087489C1

Иллюстрации к изобретению RU 2 125 578 C1

Реферат патента 1999 года СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-ПОЛИБУТИДИЕНА

Изобретение относится к способу получения стереорегулярных полидиенов под влиянием каталитических систем координационного типа. Способ получения осуществляют путем полимеризации бутадиена в ароматическом растворителе в присутствии предварительно сформированного каталитического комплекса на основе растворимых солей кобальта (нафтенат-октаноат-, ацетил-ацетонат кобальта), моно- и сесквихлоридов алкилалюминия и сопряженных диенов (бутадиен, изопрен, пиперилен) и модифицирующей добавки, в качестве которой используется соединение из групп аминоалоксанов или из группы полиалоксанов при температуре полимеризации от +50 до - 25°С. 1 табл.

Формула изобретения RU 2 125 578 C1

Способ получения цис-1,4-полибутадиена путем полимеризации бутадиена в среде ароматического углеводорода в присутствии растворимых солей кобальта, моно- или сесквихлоридов алкилалюминия и модифицирующей добавки, отличающийся тем, что полимеризацию бутадиена проводят в присутствии предварительно сформированного комплекса на основе соли кобальта, моно- или сесквихлорида алкилалюминия и дополнительно введенного сопряженного диена, а в качестве модифицирующей добавки применяют соединение из группы или аминоалоксанов формулы

в количестве 0,01 - 2,0 моль/100 кг бутадиена,
где R - этил-, изобутил-радикал;
R' - Al(R)2;
R'' - H, Al(R)2,
или полиалоксанов формулы.


в количестве 0,001 - 5,0 моль/100 кг бутадиена,
где n = 0 - 2;
R - этил-, изобутил-радикал
при температуре полимеризации от +50 до -25oС.

Документы, цитированные в отчете о поиске Патент 1999 года RU2125578C1

Тихомиров И.М., Кривошеин В.В., Коноваленко Н.А
и др
Каучук и резина
- М., 1991, N 9, с.5 - 8.

RU 2 125 578 C1

Авторы

Гольберг И.П.

Ряховский В.С.

Забористов В.Н.

Бырихина Н.Н.

Шараев О.К.

Маркевич И.Н.

Глебова Н.Н.

Яковлев В.А.

Тинякова Е.И.

Кузнецова Е.И.

Марков Б.А.

Иванников В.В.

Рыжих В.В.

Шарыгин П.В.

Даты

1999-01-27Публикация

1995-08-29Подача