СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ Российский патент 1999 года по МПК C22C21/06 C22F1/47 

Описание патента на изобретение RU2126456C1

Изобретение относится к области металлургии сплавов на основе алюминия, в частности сплавов системы Al-Li, используемых в качестве конструкционного материала в авиакосмической технике, в том числе и в сварных конструкциях.

Известны алюминиевые сплавы с литием, которые характеризуются пониженной плотностью и относительно высокой прочностью, но обладают низкой пластичностью и пониженной вязкостью, разрушения. Например, сплав по патенту США N 4,584,173, 22.04.86 имеет следующий химический состав, мас.%:
Алюминий - Основа
Литий - 2,1 - 2,9
Магний - 3,0 - 5,5
Медь - 0,2 - 0,7
и один или более элементов из группы, содержащей цирконий, гафний и ниобий:
Цирконий - 0,05 - 0,25
Гафний - 0,10 - 0,50
Ниобий - 0,05 - 0,30
и
Цинк - 0 - 2,0
Титан - 0 - 0,5
Марганец - 0 - 0,5
Никель - 0 - 0,5
Хром - 0 - 0,5
Германий - 0 - 0,2
Сплав подвергают закалке с температуры 530oC, правке растяжением со степенью деформации 2% и искусственному старению при 190oC в течение 4-16 ч.

Недостатком сплава является низкая пластичность в термоупрочненном состоянии (относительное удлинение 3,1 - 4,5%).

Наиболее близким по технической сущности и достигаемому положительному эффекту является американский сплав фирмы Reynolds Metals Company по заявке PCT WO N 92/03583 05.03.92 следующего химического состава, мас.%:
Алюминий - Основа
Литий - 0,5 - 3,0
Магний - 0,5 - 10,0
Цинк - 0,1 - 5,0
Серебро - 0,1 - 2,0
при суммарном содержании этих элементов не более 12% и, если их суммарное содержание будет 7,0 - 10,0%, то лития должно быть не более 2,5%, а цинка наиболее 2,0%; кроме того, сплав может содержать до 1,0% циркония.

Этот сплав подвергается закалке с температуры 515 - 559oC со скоростью охлаждения 38 - 93oC/с, правке растяжением с остаточной степенью деформации 5 - 8% и искусственному старению при 135 - 190oC (преимущественно при 171oC в течение 8 - 24 ч). После такой обработки и при определенном суммарном содержании и соотношении концентраций легирующих элементов сплав может обладать пределом прочности 476 - 497 МПа, пределом текучести 368 - 455 МПа, относительным удлинением 7 - 9% и плотностью 2,46 - 2,63 г/см3.

Недостатки этого сплава заключаются в следующем:
высокая прочность может быть обеспечена: высоким содержанием лития, но при этом понижается пластичность и вязкость разрушения сплава, его технологичность при холодной деформации, возникают большие трудности при изготовлении тонких листов, которые являются одним из основных конструктивных материалов для летательных аппаратов, высоким содержанием цинка, но при этом плотность сплава возрастает до значений 2,60 - 2,63 г/см3, что существенно уменьшает эффект по снижению массы изделий, правкой растяжением со степенью деформации 5 - 6% закаленного материала перед искусственным старением, что приводит к снижению характеристик вязкости разрушения.

Сплав легирован дорогостоящим серебром, что повышает стоимость изделий из него - от полуфабрикатов до готовых конструкций.

Сплавы с высоким содержанием цинка при сварке плавлением имеет повышенную склонность к образованию дефектов и значительное разупрочнение.

Из известных режимов упрочняющей термической обработки наиболее близким к заявляемому является способ, заявленный в патенте США N 4,861,391, 29.08.89. Способ включает закалку с быстрым охлаждением, правку и двухступенчатое старение по режиму:
1-я ступень при температуре не выше 93oC, от нескольких часов до нескольких месяцев; предпочтительно, 66 - 85oC, не менее 24 ч;
2-я ступень при температуре не выше 219oC, от 30 минут до нескольких часов; предпочтительно, 154 - 199oC, не менее 8 ч.

Для обшивки фюзеляжа летательных аппаратов наиболее важной характеристикой является вязкость разрушения (Кс). Летательные аппараты при длительной эксплуатации подвергаются солнечному нагреву, эквивалентному нагреву при 85oC, 1000 ч. В связи с этим к обшивочным материалам предъявляется требование по термической стабильности свойств сплава, прежде всего по термической стабильности характеристик вязкости разрушения.

Предложенный способ двухступенчатого старения, повышая характеристики вязкости разрушения, не обеспечивает стабильности свойств алюминиевых сплавов в после низкотемпературного нагрева при 85oC в течение 1000 ч. После нагрева 85oC, 1000 ч вязкость разрушения сплавов с литием, обработанных по этому способу, снижаются на 25 - 30%.

Техническая задача настоящего изобретения является создание сплава с повышенными характеристиками вязкости разрушения, улучшенной термической стабильностью свойств и свариваемостью с прочностными свойствами на достаточно высоком уровне, необходимом для обшивочных материалов.

Для достижения поставленной цели сплав системы Al-Li дополнительно содержит по крайней мере один элемент из группы, включающей бериллий, иттрий, цирконий и скандий при следующем соотношении компонентов, мас.%:
Алюминий - Основа
Литий - 1,5 - 1,9
Магний - 4,1 - 6,0
Цинк - 0,1 - 1,5
и по крайней мере один элемент, выбранный из группы, включающей:
Бериллий - 0,001 - 0,2
Иттрий - 0,01 - 0,5
Цирконий - 0,05 - 0,3
Скандий - 0,01 - 0,3
Предлагаемый сплав обрабатывается по следующему режиму: закалка с температуры 400 - 500oC в холодной воде или на воздухе, правка растяжением со степенью деформации не более 2%, ступенчатое старение: 1-я ступень при 80 - 90oC в течение 3 - 12 ч, 2-я ступень при 110 - 125oC в течение 5 - 12 ч с последующим охлаждением со скоростью 2 - 8oC в течение 10 - 30 ч.

Введение одного или нескольких элементов бериллия, иттрия, скандия способствуют формированию однородной мелкозернистой структуры в полуфабрикатах и однородному распределению выделений упрочняющих фаз, что приводит к повышению технологической пластичности при холодной прокатке, повышению характеристик вязкости разрушения и улучшения свариваемости всеми видами сварки.

Предлагаемый способ термической обработки сплавов в результате применения регламентированного медленного охлаждения после двухступенчатого старения обеспечивает: уменьшение пересыщения твердого раствора за счет дополнительного выделения дисперсной фаз δ′ (Al3Li), равномерно распределенной в объеме матрицы, предотвращает выделение по границам зерен стабильных фаз и образование приграничных зон, свободных от выделения δ′ (Al3Li) фазы предотвращение выделения δ′ (Al3Li) фазы в процессе низкотемпературного нагрева при 85oC, 1000 ч.

Примеры осуществления:
Из сплавов, химический состав которых приведен в табл. 1, отливали слитки диаметром 70 мм. Плавка металла осуществлялась в электрической печи. После гомогенизации (500oC, 10 ч) из слитков прессовались полосы сечением 15 х 65 мм. Температура нагрева слитков перед прессованием 380 - 450oC. Заготовки из полос нагревали при 360 - 420oC и прокатывали на листы толщиной 4 мм, которые прокатывали в холодную до толщины 2,2 мм. Холоднокатаные листы подвергали закалке с температуры 400 - 500oC с охлаждением в воде или на воздухе, правке со степенью деформации до 2% и искусственному старению по режимам, приведенным в табл. 2.

Свойства основного материала и сварных соединений определяли на образцах, вырезанных из этих листов. Образцы сварных соединений, изготовленных автоматической аргоно-дуговой сваркой.

Как видно из полученных результатов (табл. 3) предложенный состав сплава, образованный по предложенному способу термообработки, позволил повысить вязкость разрушения, улучшить свариваемость и термическую стабильность при сохранении высокой прочности.

Применение заявленного сплава и способа его термической обработки в клепанных и сварных конструкциях авиакосмической техники позволяет повысить надежность и ресурс эксплуатации изделий с учетом длительного воздействия солнечных лучей.

Похожие патенты RU2126456C1

название год авторы номер документа
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ 1998
  • Фридляндер И.Н.(Ru)
  • Колобнев Н.И.(Ru)
  • Хохлатова Л.Б.(Ru)
  • Каблов Е.Н.(Ru)
  • Давыдов В.Г.(Ru)
  • Чертовиков В.М.(Ru)
  • Толченникова Е.Г.(Ru)
  • Галкин Д.С.(Ru)
  • Можаровский С.М.(Ru)
  • Винклер Петер-Юрген
  • Лехельт Эрвин
  • Пфанненмюллер Томас
RU2133295C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУФАБРИКАТОВ ИЗ ЭТОГО СПЛАВА 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сандлер В.С.
  • Боровских С.Н.
  • Давыдов В.Г.
  • Захаров В.В.
  • Самарина М.В.
  • Елагин В.И.
  • Бер Л.Б.
  • Ланг Роланд
  • Винклер Петер-Юрген
  • Пфанненмюллер Томас
  • Рау Райнер
RU2180930C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ 2005
  • Колобнев Николай Иванович
  • Хохлатова Лариса Багратовна
  • Фридляндер Иосиф Наумович
  • Колесенкова Ольга Константиновна
  • Самохвалов Сергей Васильевич
RU2296176C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 1999
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Колобнев Н.И.
  • Хохлатова Л.Б.
  • Самохвалов С.В.
  • Воробьев А.А.
  • Петраковский С.А.
RU2163940C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Колобнев Н.И.
  • Хохлатова Л.Б.
RU2171308C1
КОРРОЗИОННО-СТОЙКИЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ, СПОСОБ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТОВ И ИЗДЕЛИЕ ИЗ НЕГО 1999
  • Грушко О.Е.
  • Еремина Н.Г.
  • Иванова Л.А.
  • Шевелева Л.М.
RU2163938C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2001
  • Фридляндер И.Н.
  • Хохлатова Л.Б.
  • Колобнев Н.И.
  • Колесенкова О.К.
RU2215805C2
СПЛАВ НА ОСНОВЕ СИСТЕМЫ Al-Cu-Li И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Каблов Евгений Николаевич
  • Колобнев Николай Иванович
  • Антипов Владислав Валерьевич
  • Хохлатова Лариса Багратовна
  • Вершинина Елена Николаевна
  • Оглодков Михаил Сергеевич
RU2560481C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1993
  • Фридляндер И.Н.
  • Грушко О.Е.
  • Шевелева Л.М.
RU2038405C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Клочков Геннадий Геннадьевич
  • Клочкова Юлия Юрьевна
  • Романенко Валерия Андреевна
  • Самохвалов Сергей Васильевич
RU2560485C1

Иллюстрации к изобретению RU 2 126 456 C1

Реферат патента 1999 года СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ

Изобретение относится к сплавам на основе алюминия преимущественно системы Al-Li, предназначенных для применения в качестве конструкционного материала в авиакосмической технике, и способу их термической обработки. Сплав имеет следующий химический состав, мас.%: алюминий-основа, литий 1,5-1,9, магний 4,1-6,0, цинк 0,1-1,5 и по крайней мере один элемент, выбранный из группы, включающей: бериллий 0,001-0,2, иттрий 0,01-0,5, цирконий 0,05-0,3, скандий 0,01-0,3. Предлагаемый сплав обрабатывается по следующему режиму: закалка с температуры 400-500oС в холодной воде или на воздухе, правка растяжением со степенью деформации не более 2%, ступенчатое старение: 1-я ступень при 80-90oС в течение 3-12 ч, 2-я ступень при 110-125oС в течение 5-12 ч с последующим охлаждением со скоростью 2-8oС в час в течение 10-30 ч. Технический результат заключается в создании сплава с улучшенной термической стабильностью свойств и свариваемостью с прочностными свойствами на достаточно высоком уровне, необходимом для обшивочных материалов. 2 с. и 1 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 126 456 C1

1. Сплав на основе алюминия преимущественно системы Al-Li, содержащий литий, магний и цинк, отличающийся тем, что сплав дополнительно содержит по крайней мере один элемент из группы, включающей бериллий, иттрий, цирконий и скандий при следующем соотношении компонентов, мас.%:
Алюминий - Основа
Литий - 1,5-1,9
Магний - 4,1-6,0
Цинк - 0,1-1,5
и по крайней мере один элемент, выбранный из группы, включающей:
Бериллий - 0,001-0,2
Иттрий - 0,1-0,5
Цирконий - 0,05-0,3
Скандий - 0,01-0,3
2. Способ термической обработки сплавов на основе алюминия, включающий закалку, правку и искусственное старение по двухступенчатому режиму, отличающийся тем, что после выдержки на второй ступени проводят охлаждение с регламентированной скоростью 2-8oC в час в течение 10-30 ч.
3. Способ по п.2, отличающийся тем, что первую ступень искусственного старения проводят при 80-90oC в течение 3-12 ч, а вторую ступень - при 110-125oC в течение 5-12 ч.

Документы, цитированные в отчете о поиске Патент 1999 года RU2126456C1

PCT 9203583 A, 05.03.92
US 4861391 C, 29.08.89
Сплав на основе алюминия 1988
  • Лещинер Л.Н.
  • Федоренко Т.П.
  • Латушкина Л.В.
  • Сандлер В.С.
  • Ковалев В.Г.
  • Какорина Н.Б.
  • Комаров С.Б.
  • Суббота А.П.
SU1535049A1
RU 2052533 C1, 20.01.96
SU 1487469 A, 20.02.96
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОЛУФАБРИКАТОВ ИЗ ДЕФОРМИРУЕМЫХ АЛЮМИНИЕВО-ЛИТИЕВЫХ СПЛАВОВ 1994
  • Шнейдер Г.Л.
  • Шевелева Л.М.
  • Дриц А.М.
  • Кафельников В.В.
RU2048591C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1990
  • Фридляндер И.Н.
  • Дриц А.М.
  • Кузнецов А.Н.
  • Крымова Т.В.
  • Мишин В.И.
  • Боргояков М.П.
RU1707986C
RU 2052533 C1, 20.01.96
US 5624632 C, 29.04.97
Фиксатор позвоночника 1983
  • Корж Алексей Александрович
  • Шевченко Станислав Дмитриевич
  • Хвисюк Николай Иванович
  • Грунтовский Геннадий Харлампиевич
  • Маковоз Евгений Михайлович
  • Тимченко Ирина Борисовна
  • Голухова Алла Георгиевна
  • Куценко Владимир Александрович
SU1107854A1
СПОСОБ ПРЕВРАЩЕНИЯ ДИМЕТИЛСУЛЬФИДА В МЕТИЛМЕРКАПТАН 2017
  • Канкал, Реза
  • Хву, Генри
  • Хасенберг, Дэниэл М
  • Барри, Кристина М
  • Рефвик, Митчелл Д
  • Ханкинсон, Майкл С
RU2717827C1
US 5108519 A, 28.04.92
Рабинович М.Х
Термомеханическая обработка алюминиевых сплавов.-М.: Машиностроение, 1972, с.18-20.

RU 2 126 456 C1

Авторы

Фридляндер И.Н.(Ru)

Колобнев Н.И.(Ru)

Хохлатова Л.Б.(Ru)

Давыдов В.Г.(Ru)

Елагин В.И.(Ru)

Захаров В.В.(Ru)

Братухин А.Г.(Ru)

Лехельт Эрвин

Винклер Петер-Юрген

Пфанненмюллер Томас

Даты

1999-02-20Публикация

1997-09-22Подача