МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ПОРИСТОГО СИЛИКАТНОГО МАТЕРИАЛА ПОД ДЕЙСТВИЕМ СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ Российский патент 1999 года по МПК C04B28/26 C04B111/20 

Описание патента на изобретение RU2134669C1

Изобретение относится к промышленности строительных материалов и может найти применение для изготовления теплоизоляционных плит методом воздействия сверхвысокочастотного излучения, характеризующихся повышенной водостойкостью и низкой объемной массой.

Известен состав для изготовления теплоизоляционного материала методом воздействия сверхвысокочастотного излучения, включающий жидкое стекло, кремний, гидрат окиси алюминия, гидроксид натрия и каолин (1).

Недостатком известного состава является то, что получаемые из него изделия обладают недостаточно высокой водостойкостью.

Наиболее близким к изобретению по технической сущности является состав для изготовления теплоизоляционного материала методом воздействия сверхвысокочастотного излучения, содержащий раствор силиката щелочного металла и функциональные добавки: борат марганца или цинка, гидроокись алюминия или окись цинка, асбест (2).

Известный состав дает возможность обеспечить требуемый уровень прочностных свойств получаемого из него материала. Недостатком является недостаточная водостойкость, что определяет срок службы строительного материала. Пористые материалы, получаемый из таких исходных составов, имеют плотность (объемную массу) на уровне 320 г/см3, прочность при сжатии порядка 1,6 - 1,9 МПа, водостойкость - 19-28%. Кроме того, такая исходная композиция достаточно сложна и дорога.

В изобретении решается задача водостойкости при сохранении требуемой прочности получаемого материала.

Задача решается тем, что масса для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения, включающая жидкое стекло и функциональные добавки, согласно изобретению, содержит в качестве стекла натриевое жидкое стекло и в качестве функциональных добавок магниево-кальцевый оксиднокарбонатный продукт MgOCaCO3 с соотношением MgO/CaCO3 0,25-5,0 и фторид алюминия, при следующем соотношении компонентов, мас.ч.:
Натриевое жидкое стекло - 100
Магниево-кальцевый оксиднокарбонатный продукт - 8-35
Фторид алюминия - 3-5
Признаками изобретения являются:
1. жидкое стекло;
2. функциональные добавки;
3. натриевое жидкое стекло;
4. магниево-кальцевый оксиднокарбонатный продукт;
5. фторид алюминия;
6. количественное соотношение компонентов.

Признаки 1 и 2 являются общими с прототипом, признаки 3 - 6 являются существенными отличительными признаками изобретения.

Сущность изобретения
Известные материалы для изготовления пористого силикатного материала не обладают достаточной водостойкостью и прочностью. В предложенной массе для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения решается задача повышения водостойкости и прочности изделий, полученных на ее основе.

Предлагаемое сочетание предложенных функциональных добавок в массе для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения дает возможность получить ранее не фиксируемый результат. Активный по отношению к натриевому жидкому стеклу магниево-кальцевый оксикарбонатный продукт (наполнитель), взаимодействуя с жидким стеклом, связывает щелочь, образуя труднорастворимое соединение. Использование более активного компонента - фторида алюминия как инициатора твердения (отвердитель) усиливает процесс образования труднорастворимого соединения (увеличивает скорость). В результате этого эффективного взаимодействия, а также воздействия сверхвысокочастотного излучения для термообработки, образуется водостойкий материал с приемлемой прочностью.

Состав для получения массы готовят следующим образом. В жидкое натриевое стекло добавляют магниево-кальцевый оксиднокарбонатный продукт, перемешивают до однородной массы, добавляют фторид алюминия, тщательно перемешивают до получения однородной массы. Полученной массой заполняют формы и выдерживают на воздухе при комнатной температуре 10 - 20 мин, после чего помещают в резонатор сверхвысокочастотной печи и проводят термообработку, при которой масса вспучивается за счет испарения воды и приобретает требуемые свойства.

Магниево-кальцевый оксиднокарбонатный продукт - это продукт полуобжига доломита MgCO3CaCO3. Температура разложения MgCO3 ниже температуры разложения CaCO3 на 150-200oC, поэтому в результате низкотемпературного обжига при 700 - 750oC получается MgOCaCO3. Это и есть магниево-кальцевый оксиднокарбонатный продукт. Такой продукт можно получить смешав MgO и CaCO3. Для изменения соотношения MgO/CaCO3 можно добавить к MgOCaCO3 каустический магнезит MgO.

Примеры конкретного выполнения
Для экспериментальной проверки заявляемого изобретения были приготовлены 9 составов для получения пористого силикатного материала путем нагрева сверхвысокочастотным излучением. Полученные результаты приведены в таблице. Составы отличались количественным содержанием функциональных добавок и соотношением MgO/CaCO3. Оценка проводилась по прочности, объемной массе и водостойкости. Водостойкость определялась как остаточная прочность при сжатии после водонасыщения (выдержка в воде 24 часа). Во всех случаях массу обрабатывали в поле сверхвысокочастотного излучения с удельной мощностью 0,65 к/Дж/см3 при температуре 170-180oC. Из приведенных данных видно, что масса предлагаемого состава обеспечивает получение пористого силикатного материала с высокой прочностью и высокой водостойкостью. Потеря прочности после насыщения водой в результате выдержки в воде 24 часа составляет 2 - 16%.

Таким образом, предложенная масса позволяет получать высококачественные строительные материалы - пористые теплоизоляционные плиты с высоким сроком службы.

Источники информации.

1. Патент РФ N 2026844, опублик. 1995.

2. Акцептованная заявка Японии N 53-39890, опублик. 1978 - прототип.

Похожие патенты RU2134669C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ СИЛИКАТНЫХ МАТЕРИАЛОВ 1998
  • Брыков С.И.
  • Бусыгин В.М.
  • Валеев Р.Г.
  • Гайсин Л.Г.
  • Галимов К.С.
  • Закиров Ф.А.
  • Корнеев В.И.
  • Мочалов Н.А.
  • Мухаметов И.Х.
  • Поддубный Ю.А.
  • Тихонова Т.Д.
  • Федурин А.А.
RU2134668C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ГИДРАТИРОВАННЫХ СИЛИКАТОВ НАТРИЯ ИЛИ КАЛИЯ 1998
  • Брыков С.И.
  • Бусыгин В.М.
  • Валеев Р.Г.
  • Гайсин Л.Г.
  • Галимов К.С.
  • Закиров Ф.А.
  • Корнеев В.И.
  • Мочалов Н.А.
  • Мухаметов И.Х.
  • Поддубный Ю.А.
  • Тихонова Т.Д.
  • Федурин А.А.
RU2134247C1
СПОСОБ РАСТВОРЕНИЯ СИЛИКАТОВ И РЕАКТОР ДЛЯ РАСТВОРЕНИЯ СИЛИКАТОВ 1998
  • Бусыгин В.М.
  • Валеев Р.Г.
  • Гайсин Л.Г.
  • Галимов К.С.
  • Закиров Ф.А.
  • Мочалов Н.А.
  • Мухаметов И.Х.
  • Поддубный Ю.А.
  • Свиридов С.И.
  • Тихонова Т.Д.
  • Федурин А.А.
RU2134664C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА И РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 1998
  • Бусыгин В.М.
  • Валеев Р.Г.
  • Гайсин Л.Г.
  • Галимов К.С.
  • Дебердеев Р.Я.
  • Закиров Ф.А.
  • Мочалов Н.А.
  • Мухаметов И.Х.
  • Поддубный Ю.А.
  • Тихонова Т.Д.
  • Федурин А.А.
RU2133715C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА И РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 1998
  • Бусыгин В.М.
  • Валеев Р.Г.
  • Гайсин Л.Г.
  • Галимов К.С.
  • Дебердеев Р.Я.
  • Закиров Ф.А.
  • Мочалов Н.А.
  • Мухаметов И.Х.
  • Поддубный Ю.А.
  • Тихонова Т.Д.
  • Федурин А.А.
RU2134244C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА И РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА 1998
  • Бусыгин В.М.
  • Валеев Р.Г.
  • Гайсин Л.Г.
  • Галимов К.С.
  • Дебердеев Р.Я.
  • Закиров Ф.А.
  • Мочалов Н.А.
  • Мухаметов И.Х.
  • Поддубный Ю.А.
  • Тихонова Т.Д.
  • Федурин А.А.
RU2134245C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРАТИРОВАННОГО ЩЕЛОЧНОГО СИЛИКАТА 1998
  • Бусыгин В.М.
  • Валеев Р.Г.
  • Гайсин Л.Г.
  • Галимов К.С.
  • Закиров Ф.А.
  • Мочалов Н.А.
  • Мухаметов И.Х.
  • Поддубный Ю.А.
  • Свиридов С.И.
  • Тихонова Т.Д.
  • Федурин А.А.
RU2134246C1
СПОСОБ ТЕРМИЧЕСКОЙ СТАБИЛИЗАЦИИ ПОЛИКРЕМНИЕВОЙ КИСЛОТЫ 1998
  • Бусыгин В.М.
  • Валеев Р.Г.
  • Гайсин Л.Г.
  • Галимов К.С.
  • Закиров Ф.А.
  • Мочалов Н.А.
  • Мухаметов И.Х.
  • Поддубный Ю.А.
  • Свиридов С.И.
  • Тихонова Т.Д.
  • Федурин А.А.
RU2134249C1
МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ПОРИСТОГО СИЛИКАТНОГО МАТЕРИАЛА ПОД ДЕЙСТВИЕМ СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ 1998
  • Ненарокова Н.И.
  • Пупышев В.В.
  • Шиканов А.С.
RU2133718C1
МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ПОРИСТОГО СИЛИКАТНОГО МАТЕРИАЛА ПОД ДЕЙСТВИЕМ СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ 1998
  • Ненарокова Н.И.
  • Пупышев В.В.
  • Шиканов А.С.
RU2134667C1

Иллюстрации к изобретению RU 2 134 669 C1

Реферат патента 1999 года МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ПОРИСТОГО СИЛИКАТНОГО МАТЕРИАЛА ПОД ДЕЙСТВИЕМ СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ

Macca относится к промышленности строительных материалов и может найти применение для изготовления теплоизоляционных плит методом воздействия сверхвысокочастотного излучения, характеризующихся повышенной водостойкостью и низкой объемной массой. Масса для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения содержит, мас.ч.: натриевое жидкое стекло 100, магниевокальцевый оксиднокарбонатный продукт MgOCaCO3 с соотношением MgO:CaCO3 0,25-5,0, фторид алюминия 3-5. Техническим результатом является повышение водостойкости при сохранении требуемой прочности получаемого материала. 1 табл.

Формула изобретения RU 2 134 669 C1

Масса для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения, включающая жидкое стекло и функциональные добавки, отличающаяся тем, что содержит в качестве жидкого стекла натриевое жидкое стекло и в качестве функциональных добавок магниево-кальцевый оксиднокарбонатный продукт MgO • CaCO3 с соотношением MgO/CaCO3 0,25 - 5,0 и фторид алюминия при следующем соотношении компонентов, мас.ч.:
Натриевое жидкое стекло - 100
Магниево-кальцевый оксиднокарбонатный продукт - 8 - 35
Фторид алюминия - 3 - 5

Документы, цитированные в отчете о поиске Патент 1999 года RU2134669C1

Веникодробильный станок 1921
  • Баженов Вл.
  • Баженов(-А К.
SU53A1
RU 94027685 A1, 20.05.96
СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1993
  • Малявский Н.И.
  • Генералов Б.В.
  • Крифукс О.В.
  • Павлюковец В.В.
RU2087447C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТРОИТЕЛЬНЫХ БЛОКОВ 1991
  • Лопатин А.А.
  • Перовский Э.В.
  • Путляев И.Е.
  • Старец Я.А.
  • Чентемиров М.Г.
RU2016886C1
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ИЗ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА 1996
  • Куликов Б.П.
  • Рагозин Л.В.
  • Слепокурова С.П.
  • Дубровинский Р.Л.
  • Лисай В.Э.
  • Фаддеев С.Г.
RU2098380C1
RU 95102077 A1, 20.12.96
Съемник разделительного штампа 1973
  • Ованесов Юрий Вагаршевич
  • Рябов Юрий Георгиевич
  • Степанян Эрст Аракелович
SU457516A1
Смеситель для вязких материалов 1987
  • Бекесевич Юрий Ярославович
  • Бекесевич Анна Степановна
  • Пивоварчук Дмитрий Романович
  • Огирко Игорь Васильевич
SU1546125A1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛЕНТОЧНЫХ ПЛИТ ИЗ ТОРФА ДЛЯ ИЗОЛИРОВАНИЯ ТРУБ 1935
  • Воробьев С.И.
  • Авдулин К.В.
  • Андреевский В.А.
SU47675A1
Способ размножения копий рисунков, текста и т.п. 1921
  • Левенц М.А.
SU89A1
Главный желоб доменной печи 1987
  • Верцман Григорий Моисеевич
  • Денисов Анатолий Васильевич
  • Шестопалов Иван Иванович
  • Токарев Лев Сергеевич
  • Макаров Вениамин Сергеевич
  • Униговский Леонид Борисович
  • Шульмин Владимир Георгиевич
  • Прохоров Виталий Никитович
SU1578203A1

RU 2 134 669 C1

Авторы

Брыков С.И.

Бусыгин В.М.

Валеев Р.Г.

Гайсин Л.Г.

Галимов К.С.

Закиров Ф.А.

Корнеев В.И.

Мочалов Н.А.

Мухаметов И.Х.

Поддубный Ю.А.

Тихонова Т.Д.

Федурин А.А.

Даты

1999-08-20Публикация

1998-05-29Подача